C.M.S. • Fredericton, NB • June 2010
Meditations on Arens Multiplication
Next    F.E.J. Linton • Wesleyan Univ. Math/CS Emeritus
  We fix a dualizing object C and write A* = CA. The intent:
maps <X, Y, ..., Z> → A* = CA should amount to maps <X, Y, ..., Z, A> → C.
  In particular, there is evA: <A*, A> → C corresponding to idA*: A* → A* .
  From Ai , μ: <A1, ..., An> → A0, Arens’s μ: <(A1)**, ..., (An)**> → (A0)**
is the last of n+1 2-step †-stages: the steps of †-stage 1 are: (1) the compositum
evA0·<idA0*, μ>: <(A0)*, A1, ..., An–1, An> → <(A0)*, A0> → C (step 1) and
(2) the associated multinear μ: <(A0)*, A1, ..., An–1> → (An)* (step 2).
(Loosely: μ(φ, a1, ..., an–1)(an) = evA0(<φ, μ(a1, ..., an)>) = φ(μ(a1, ..., an))).
  Iterate n ×: (μ) = 솆: <(An)**, (A0)*, A1, ..., An–2> → (An–1)*, ...,
..., (μn–1) = μn: <(A2)**, ..., (An)**, (A0)*> → (A1)*, and finally
n) = μn+1 =def μ: <(A1)**, ..., (An)**> → (A0)** (naturally in all Ai).
  NB: for μ: AB, μ = μ*: B* → A* and μ = 솆 = μ**: A** → B**; for
a: <> → A, evA·<idA*, a>: <<>, A*> = <A*> = <A*, <>> → <A*, A> → C
and (w/ lgos) a = a = eva: <> → A** ( = iA(a) in symmetric monoidal case).