C.M.S. • Fredericton, NB • June 2010
Meditations on Arens Multiplication
F.E.J. Linton • Wesleyan Univ. Math/CS Emeritus
In a monoidal setting, there’s a ⊗‡:
<X**, Y**, ..., Z**> →
(X ⊗ Y ⊗ ... ⊗ Z)**
arising from the universal multilinear ⊗:
< X, Y, ..., Z> →
X ⊗ Y ⊗ ... ⊗ Z
and, when μ:
<X, Y, ..., Z> → A,
we have (naturality in A) μ‡ =
μ** · ⊗‡:
<X**, Y**, ..., Z**> →
(X ⊗ Y ⊗ ... ⊗ Z)**
→ A**.
One may also view ⊗‡ and μ‡ as maps
X** ⊗ Y** ⊗ ... ⊗ Z** →
(X ⊗ Y ⊗ ... ⊗ Z)**
and
X** ⊗ Y** ⊗ ... ⊗ Z**
→ A**
— i.e., Arens’s work exhibits monoidal structure on ** .