
CLASS NOTES OF PROF. LINTO}{'S
LECTURES ON CATEGORY THEORY

(DRAFT)

Fall 1996

Wesleyan University



Contents

Lecture 1. A category "is" a matrix-monoid (9/9)

Lecture 2. Categories (9/11)

Lecture 3. Functors (9/16)

Lecture 4. A-Algebras (9/18)

Lecture 5. Yoneda Representation (9/23)

Lecture 6. Constructions

Lecture 7. Free A-algebras (9/30)

Lecture 8. Equationally defined classes (1012)

Lecture 9. Congruence relations and quotient algeblas (10/7)

Lecture 10. Lalvvere's Theorem (10/9)

Lecture 11. Beck's Theorem (10114)

Lecture 12. Adjoint Functors (10/16)

Lecture 13. Proof of Lar,vvele's Thm.

Lecture 14. Continuation of the proof Q0123)

Lecture 15. (10/28)

Lecture 16. Proof 4

Lecture 17. Monads (1114)

Lecture 18. T-algeblas

Lecture 19. Proof of Beck's Theorem (11/11)

Lecture 20. Triples r./s Theories (11/13)

Lecture 21. Structure r,/s Semantics I

5

q

15

21

25

31

qn
JI

43

49

55

61

ti(

-,IJ

79

83

87

93

99

105

109

115



4

Lectwe 22.

Lecture 23.

Lecture 24.

Lecture 25.

Lecture 26.

Contents

Stuctures v/s Semantics II

Birkhoff's Theorem lll 125)

ICounter']examples and corollaries (72 I 2)

Rank (revisited) (121 4)

/- Categories (12/9)

L27

125

729

I OOIJJ

137



LECTURE 1

A category "is" a matrix-monoid (9/9)

Some key concepts. Let us start by leviewing tluee important con-
cepts that will apppear recurrently in the future.

Panrly-oRDtrRtrD strTS (posors). Let X be a set rn,ith r.elation
< C X x X. A poset is a pair (X,<) subject to the conditions

alct
ulbAb<clulc

for all elements cL,b,c e X. (Optional, rarely leally wanted: Va,b e
X:a<6Ab1a+a:b.)
MoNolos. Let X be a set nith e € X and binary operation
x : X x X---+X that satisfies the equations:

t*t'-f-t'*tt

r*(yxz):(r*y)*z

I-rxopxpo FAMILIES. Let A: I---+T be afunction, and write A(r) :
A; e T, hence A : I---+T is nothing else but {Ao},.r. Clonsider a

function a : T---+[. Notice the correspondence betr,r,een both presen-
tations:

T=P (r), A,=a-1(i)

7Atjrcr ' . ?- ---+ I-------;
E-it A.

Square-matrix monoids. In the case when I : R x C, an /-indexed
family becomes a "matrix", and if -B : C, a square matrix.

R n (-' --:---=* T
t,.1QL =H

T :1,4;j
Ii

C: xC
tlol ullt

C



6 LECTURE 1. A CATEGORY "tS" A MATRIX-MONOID (e/9)

What is the usual "product" of matrices (square or not)?

(Ac B);1,: D A;1 . B1t
jet

HereAis an.Bx./matrixand Bis an..Ix Cmatrix(i e R,k e C).
The usual interpretation is: The entries A;j,Bi* are real (or complex)
numbets, or elements of some (commutative) ring, f is the summation,
.is the multiplication. What if the entries are other things, with mean-
ingful, relevant definitions for I and . ? And for which such contexts
can it make sense to ask that a square matrix A (with R -- C) "act
like" a monoid, with associative, unitary A o A---+A?

What arises as square-matrix monoids (multiplicative graphs, cat-
egories) when entries are required to be 0 or 1?, positive extended real
numbers?, sets ? The following table shows the answer in each case:

matrir entries are
0or1

what arises
posets

pos. ext. reai numbers non-symm., non-sep. metric spaces

sets categories

The details are as follows.

PosBts. Define the multiplication (recall we have only 0's and 1's)
as the usual multiplication on the reals, and the summation as the
maximum: D*sr:dey rnax6{s4}. Also,tf A;i: l write i < j, and one
thinks "rnup from e to 5" (for €: 0,1, d: 0,1) if and only if e < d.

(Ao A).;1: t A;t,Ani
k

(Ao A);1-+A;1

CarpcoRIES. Remember that now the entries of the matrix are sets.
The multiplication here is the cartesian product, and the summation
is tlre disjoint union. So, a squale matrix A (C x C) is a bunch of sets
and

Aij": a collection of maps getting to i from 7.
(L-)r a bunch of proofs of i from hypothesis j.

(A o A);1: I(A,* . An) : ux(Arx x Axi)
k

Here
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LECTURE 1. A CATEGORY uts" A MATRIX-MONOID (e/9)

(A o A);1

extended with oo. The multiplication is ordinary arithmetic addition.
Finally the summation is the infimum: Dr : inf{sr}.

(A o A)4 : D(dor . dx) : inf {d(i,k) + d(k, j)}
k

and one thinks "-up from r to s" if and only if r ) s.

(A o A)ii

lo 
- 

',,"-

a(;i1 1s* @);i

RBltaRx 1. There are generalizations of these three constructions,
namely U-promonoidal categories, where the "domain" LI of matrix
entries is (the class of objects of) a "closed", or a "monoidal", or a
"promonoidal" category. But we are gettinffihead of ourselves; q-e \*"L-t z-(p .-"^

(: ; ;



LtrCTTIRtr 2

Categories (9/11)

DBrrxl:rtoN l. A category A (rvith object-clasr 1.41, hom-sets A(A, B).
composition rule o, and identity maps e,1) is given by specifying:

1. A class lAl of ob.jects.

2. For each ,{, A e )Al, a set A(A, B) (also rvlitten homa(A, B) or
mor/(,4, B)) of ntorph'isms (maps, arrou,s) from A to B.

3. Fol each ,4, B,C: e .4, a function

A(B,C) x A(A, B) --+ A(A,C) :: (f ,g) ,+ f od g

4. For each A e A, a distinguished map en e A(A,A) (also usualiy
denoted by ida).

a1l subject to the following conditions:

(5) For all A,B,C,D e A,
for all f e A(C, D), g e A(B,C), h e A(A, B) :

(JotJ)oh--folsoh)

(6) For all A. B,C e A,
foral1 f e A(A,B),se A(B,C):

goLB:! esoJ':I

RBttlRx 2. Some authors lequire that the hom-sets be clisjoint. I
have not found any good reason to put in that lestriction. I think that
this presentation allows more flexibility.

Usuall1, categorical concepts are expressed bv means of diaglams:

write ,q -J-+ A 
, 
to, f e A(A, B)



10 LECTURE 2. CATEGORTES (e/11)

So, axiom (5) could be stated as:

-D

f
and axiom (6) states that in the following diagram each path gives the
same result:

A

B

1.''
. t'J \':''a s ,,'\l

^ ^r' ,\ "elcavl -.t \ I\l
B

Examples.

SBrs. The category Sets. Here l5etsl is some universe of sets (your
favorite model), and.Sefs(A,B): BA. The composition rule is the
usual composition of functions.

Topor,octcll Sp.qcps, The categor5,Top. Here lTopl clenotes all
topological spaces and 7op(,'1. B) all continuous functions from A to
B.

Gnoups. The categor--v here is Qp. lSpl is all the gror.lps. On the other
side gp(A, B) clenotes all group homomorphisms from A to B.

AeBI-rlN Gnoups . AbGp is similar u" Qp, but about commutative
gloups.

\,{oour,ps. The categor5,' L-Mod is defined for A aicomrrutative,ring.
.\-Mofu(A, B) is the collection of A-homomorphisms.

."i.



LtrCTURE 2. CATEGORTES (e/11) 11

MoNoros. If (r1.{,.,"u) is a monoid (with multiplication r.y u,ritten
just ry, and unity ey), let Mvbe the category defined by:

lMul: I, where t : {*}
MruG,*): M

roMY:rY
e* : e\[

DlscRprp CarncoRr'. Fix a set X. Define the category 2;; by

lDxl: X

Dx(.r^0,:la it'r1Y
" tl ilt:U

Dy is cailed the discrete categorl, on the class of objects X.
Posors. If (P, <) is a paltial orclered set (poset), define Cp by

lCpl: P

Cp(r,y) : {(r,:y)} n ,: {A.. if t- { Y

Itt ..ul] tt r I v

The hom-set can be alternativeiv defined as

.a, la Ir{vLpt.r..y,: 
t1 iI.r.< y

From this point of vieu,, Da is nothing else than the categorl, D1x,g;,
r,vhere ( is the cliscrete older in {.
NlruRlt- NuNteBRs. Using the examples of Nlonoicls, Discrete and
Poset Categories above, we can define:

1. 0: the emptv category.
2. 1: the 1-object. 1-molphisms category.
3. In general, fol each oldinal number n, n : Cn.

4. Also \{,'e ca1} clefine alternatively 2 as the categorl,

oo4or

5. 3 as the category

0

1v 
\___--*



t2 LtrCTURE 2. CATEGORTES (e/11)

6. 4 as the category
1v 
I ------

---/ 

--t--

L-
7. An so on: n would be the oriented graph witlr zz veltices, and

edges from I to 7 for each i 1 j, i, j € ,t.
8...4211ix.+;: It is difficult to draw it here: is a o rvith one circular

arrow alound it fol each natural number.

Note that rve have at least 3 different categories that represent the nat-
ural numbers: 21; (the discrete category), Cry (with the order lelation
of N), and M1rv,+; (rvith the monoidal structure of N).

A-,q.LcneRAS. One 1ast, and important, (family of) example(s) of (a
type of) categorl,: L-Alg. Fix a set A and a function n : A ---+ lSetsl.
B), a (lawless1) A-algebra (better would be: "(A, rz)-algebra") is meant
a set X together rvitir one honest-to-god function

X, : \'"(') ---+ X
for each u., € A. \\re clefine lA-,a/gl as all A-algebras, and the arrows
of this categoly, A-"41g((X.(f,)-ea), (t'', ()'"),er)), by

{./ a l,.-" ] Vu.,€ A, diagram (1) commutes}

/f\

-\n(o) -l rf 
1',{,1tltlil) '"1 It.i r .,f

It is eas1, to see that the cornposition rvorks, checking the commutatir-
ity of the outside box in the follorving diagram (this means that you
can go 'b1' different paths' in the diagram):

r r) (o)
,yrr(*) 

t." , 1rt(t\ \Yt , 7rt(t\ttllllY.,l ) -l lZ-ttli i .i , ,)
Some Constructions.

'w" h.* Li,il..'o *urf,Jr.H##- equationslot Is,",r) I



LECTURE 2. CATEGORIES (e/11) 13

TUB PosBT oF A CRrBcoRy. If X is a category, write pOa : lXl,
and define the relation ( in POx as:

A lpox B iff there is / e X(A, B)

So, we havethat Alpox A because ex e X(A,A), and if A{ps* B
and B {po* C, then A {pox C by property (4) of the definition of
category. So, to every category X we can associate a poset POx. It
can be easily checked that POprx,<) : (X, <).
TUB opposlTE cATEGoRy. If "4 is a given category, the opposite
category of "4, denoted by Aop ts given as follows:

lA'el: lAl
A'o(A, B) : A(8, A) f oA", 9 : 9 o"t f

It is important to notice that (A"r)op - A. The classical model for
this construction is the reversing of the ordering of posets, and in non-
commutative rings and groups by reversing the operation r .ooy : y.r).

Generally, A and Aop wrII have very different properties, and will
not resemble each other at all, e.g.

Sets
0 is a universal source
1 is a universal target

Vr(r I Av 
= 

7: 1 ---+ r)

Setso?

0 is a universal target
1 is a universal ,oui." Yet some-

false here!
times A and Aop rnary be virtually identical, as with locally compact
abelian topological groups, according to Pontriagin duality.
TUB pRooucr cATEGoRy. Given categories "4 and B, define their
productby

lA x Bl: lAl x lBl

{A x B}((Ar,, Br),(Ar, Br)) : A(At, Ar) x B(Bb 82)

The composition of ar-rorvs works in the obvious way:

' (A, , Br') ,

'-ll-li/,1 lz 
i

stoltt (A.r, Br) tszo.fz

'rr'i ,,1 ls, i

t(A=,Br)r
Notice how one large family of categories lf looking just like Xop rs

given by X: Ax Aor. For, generally,

(AxB)"e:AoPxBoP
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So, in pa,rticular

(A x a'rYP : AoP x lAoP)oP -- A'P x A
and it is not hard (using (r,,y) + ('y,r)) to make Xop - Aop x,4 "look
just like" Ax Aot': X.
THE "sLICE" c.A.TECioRy. Given a category A, for 1 € "4 define the
category Ai ("A slice(d over) 1") by:

l/lrl : l)oruAtt, 11

lt, I\
Al, I .l l. l:1utt A-!+BlGos:r\

IJJI\r t/
that is. the objects are arrows with target 1, and the arrows are maps
A -3+ B such that the following diagram commutes:

A ? ,B

\/
tr\ /c



LtrCTURtr 3

Functors (9/16)

We rvill stalt with an example. Consider the "transfolmation" U fi'om
the category A-" Jg to Sets. sencling each A-algebra to its unclerly'ing
set, and a A-morphism to the set-function underlying it.

L-A1g (x, {x.}..o) 4 (I {),.}..o)

Sets

I

I

I

I

t
f

The composite can be done in the natural rval'. As \rou see, things are

the same. \&-e are just looking them in a different flameu,ork. This is
just a particular example of a more general concept:

DprrNrrroN 2. Given categories X,A,by a functorfrom X to A
is meant any conple of rules

F : lxl ---+ lAl
VX, Y- e .11 F : X(X,)') ---+ A(FX, FY)

meeting the following requirements :

F(u o.f): F(g) " e(./)
Ftr i'l : eF(.\')

We can see that orlr example above is a functor'. callecl LIl. In the
same \va,\/ that small categolies helpecl us understancl some basic ideas,
functols between small categories help clar.ify concepts too.

EraH,tpt-B 1. Functolsf,:1---+X. HerewehaveF(x) e #and
fl(..) : er(x)' Notice the corresponclence:

t f+ x :=+ fl(*) e l/l
* -.1 - 

.le .t'

i.e. a functor fl : 1 ---+ lf "is an object" of X.
15



16 LECTURE 3.

Exattpt-B 2. Functors -E :

following diagram:

1

FUNCTORS (e/16)

2 ---+ X. Such a functor fits in the

1

and therefore "cleterrnines" tu,o objects, A: e(0) and B: fl(1) of
X. But u,ait: there is more. \\'hat is this functor? it is just a lrrap
A -5 B in ,\ alising as o : F(0 < 1) (with label, source and target).
In some sense, "2" is the platonic version of a map, and A -5 B its
concrete lealization.

Now considel the follou,ing diagram:

x

/
,1iar )

Take X -l+ )'in

(id

/-
,t,

IU. We have the fol

r(r-) :0(X. u, *
I

F(o )l=d(-.,t,lo )

I

lowing diagram:

G(X): d(X, 1)

I

G@)l=o(t.ir\1

I
F(Y) : 0(Y,0) 

- 
G()') : d()_i 1)

Brit even lrlore. For each X e ,T:

0(rx, o (r) : 0v : F(X) ---+ G(X)

/ --'
/'t---t of rt=fBl

A



e(x) '* , c](x)

(2) ',",1 'a(.. S) 
1.,.,l.+

e(),) u* , G(Y)

diagram (2) commute.

LEL'TURE 3. I'UNCTORS (e/16) t7

N,a.s.c. that the data F(X), G(X), fl("), G(*), dy as above that arise
from the functor 0 :,t x 2 ---+ A are:

1. f clefine a fnnctol X ---+ A.
2. G define also a functor X --+ A.
3. Tlre various maps 0y : F(X) ---+ G(X) fulfill:

For all X, Y € X, for all a € X(X,Y) :

It is clear that F and G are functors. The commutativity of diagram
(2) follows from the three ways we can see the functor (*, S)(X0,0 ----)
(yr,1), which is the diagonai in diagram (2)

(xo, o-) ),',1)

It is easy to see that the converse holds too, that is if u,e have conditions
(1),(2) ancl (3) above, we have a functor from 2 to X. This is rvhat
does it mean to have a natu.ral transformation from F to G. So we
harre norv tu,o rriervpoints to see natural transformations.

DBprNrrroN 3. Given functols F,G : X ---+ A, a natural trans-

formation d from F to G "is" a famil5, {d"}"." of ,A-rnorphisms
0y : F(X) ---+ G(X) such that cliagram (2) commutes.

Or, in other presentation, a natulal transformation between func-
tors F, G : ,T ---+ A is a functor

0:Xx2---+A
such that composing u,ith

,y

i,0



1B LECTURE 3. FUNCTORS (e/16)

to give exactly f, and G.

C.q.rnconv oF CATtrGoRItrs. Given categories .4 zrnd 13. appropriate
"maps" from "4 to 6 are the functors .E : A ---+ 6. \\,'e can build the
category Cat. clefined so:

lC"tl-- { "a,11" categories}

Cat(A.B) : {F : A ---+ B I F functor' }
Composition is clefinecl in the natural way. This is a category except
. . . it makes no sense for set theory.

CarBcoRv oF FUNCToRS. Now, consideling Cat(A,B) as objects,
we can form a new category, Func( A,B), nhose arrows are natulal
transfolmatioirs:

lI'unc(.4, B)l : Cat(A, B)

{Func(" , B)} (F, G) : n.t.(F, G)

Given three functors F,G,H : X--+4, and natnral transformations
P * C and G 4 H u, in the diagram belor,v

f+

.Y--, l' ,o
$rH---------:-

rve have for each X e .1':

n(x) !+ ctx) 5 a1x;

and it is not hard to verif-v that the family {() o d)a};;gs defined as

,^"r,r:lroA"
is a natural transformation.

Cax wo coNTINUtr?. Once again, consider {Func(",l, B)}IF,G) and
take tr,vo natural transformations (as ob.jects):

F

x e,+ 3 +sr,A
G

Question to sharpen mind's teeth: What would Ue 4? (i.e. an arrow
between natural transformations ? )

FuwctoR IN Two vARIABLES. Let us generalizethe construction in
2. Take a functor

Xxlf*A



LECTURE 3. FUNCTORS (e/i6)

and write

Tx,:7({r, -) , } '--+ A
Tx, - Tl-,Xr):.\' ---+ A

Recal1 70 and 71 nele -P ancl G respectively in exa,mple 2. Is there some
side-condition u,e can impose so that clata of this sort to be arising florn
7;;o and Tx'? The ansu'el is yes (and exactly the same condition):

For all (xo $ Xr)e .T, fol all ()ao 4 )',) e )/,
TxoUs)

19

T(Xo, ii)

I

lrt, ( ,)

I
7(X1, )i)

7(&,l;)

I

rto (" )l

I
7(X1, Y-o)

he leason is
and p rvas

(3)

should commute. T
of 2 (there )) was 2

exactly the sarne as in the special
ids or id1 or ().
(-\. YL)

,,yr.- \0,(Xr,)il ('''6) 'i,,)l)
\ -"'(o.id) -1 

,.6f 
tt,,..t,

You could hope that mavbe a function J , X x 1' ---+ Z is continuos
iff each ft and l')' ut" continuous, plus some compatibility' conditioir
replacing the commutativity of a diagram like (3). Unfortunately no
such translation of condition (3) seems possible ol meaningful in this
context.

Txr@)



LtrCTURE 4

A-Algebras (e/18)

Consider the following diagram defining UX({): (U6(X))":

Sets

What should be understood by nat(Uft,U6)? Does nat(UX,U^)
form a A-algebra? When a ring-theorist, a group-theorist think what
are the "natural" operations for a ring, for a group, they think in op-
erations of certain arity, such t, x, an so on. The ttnatural" operations
in a lattice include both joins, meets, etc.

NaruRal OpBRauoNS. By a natural operation ,\ on A-algebras (of
arity n (n a set)) is meant a scheme of some sort by which, for each A-
algebra (X,(X,),ra) and each n-tuple r : (.-.*0...)nr, from X, that
is r € X", there is associated in a "natural way" a value )(r) e X.
A naturai way such that whenever X -J* V is already a A-algebra
homomorphism, then

/()(''' ri"')rc,) : )(''' /(r,) "')orn

(every A-algebra must "preserve" this operation), i.e.

), i,s just a natural transformation Uft ---+ Ltt

Let us present a very 'natural' collection of natural transformations:

---+ nat(t{, t,a)
+g;

27

g :n
i



22 LECTURE 4. A-ALGEBRAS (e/18)

where the family (S; , UK---+UI)x is just the famiiy of projectionsl:

(g,) *, (tr 6(X)) ---+U 
"(X)

('t, " ',rr) '+ 14

(Note that for algebras with more than two elements, gn I gi for i I j.)
Another collection of natural transformations is the following one,

given by A: Given o € A, we can find

A,: (u6)"@)--sYo

defined (let us write a., instead of .\, to simplify notations) by

(),), : lXl"(')-+lxl : gn(') 61-+U{X)
- X': lf 1"('t-+lXI

To check that this is a natural transformation we have to check the
commutativity of the following diagram:

X"@) yn(,)tt,_l 1,.-rl
l+
x -;1;;; ).

DBntvoo OpBR.q,rtoNs. (Nonetheless) given co € A and given n(w) n-

ary operations ); e nat((Ua)",{It), we wish to define r((' ' '); ' ' ' )r.,1,1) e

nat((t/a)",tlr).So, for each A-algebra X, let us give the X'fr compo-

nent of cu()) as the composite:

{r(( .)j... )irn1.y)}x , lXl" 
("'();)x"')ie"('l 

lx1@l 
*' , x

Erercise. Why is this a natural tlansformation as indicated? (hint: has

to do with the fact that the composition of natural transformations is

a natural transformation).
universal algebraists also speak of deri,ued operations, or polynom'ial

operations on A-algebras . . . Those, of arity n ate just the natural
operations in the subalgebra of nat([/f,, ua) generated by the previously
described g; (i e rL). Certainly each original n-ary u appears there

(more accurately, what we called ), does) as

), : cr((. .'9;"');e*

lThe notation gi to suggest the ith-generator of a free group in group theoly'
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It is easy to check. Indeecl. when n : rz(o),

, ,.,, ("'(g,)x"'),6,, 
,

l^ | -----+ l.\-l' : idlrl,,

SO

().), - X, o id: X-
GBNBR.qTtrD SUBALGEBRA. Let A, rz : A---+l,Setsl be given, let A bc
a (not necessarill,- sma11) A-algebra. Let G C A be a subset of A, and
let r : the least regular cardinal wiht no n(r"u) cofinal in it2. (This r
exists if .r is a set). Let us call r the rctnk of (A,(rz(r")).er). By u

L-subalgebra of A generated by G C A, r,ve mean the smallest subclass

S g A "closed under the operations u; € A", that formally means:

V(a) e A'(-)V*' € -\V1 € n(*,)(a; e S + ur(a) e 5')

Cluciai Claim: the upper bound for size of S is a simple set function
of r ancl G.

Pnoop. (Due essentially to Baire: is just the Baire construction of
Borel sets).

_ /l
-\0 - 

L7

-{r:-fou Uur(x;('); cA
deA

l'z:Xr u !."'1Xi(');

:

Nor,v, ha,ving X; for 
^ 

< 13 define

rtr:U x.ru Ur( UX1)"('),\<P u€A )<B

(this works for limit and succesor ordinals). So is clear that -X, is a
subalgebra of A ancl contains G. tr

2If you consider onlv infinite ca.rdinals, it is enough to say'least regulal caldinal
bigger than each ir.(ur)'. Recail tha,t r is regular iff is the suprerrurn (sum) of
strictly ferver, each strictly smaller, sets is (itself) strictly srnaller. The first ones

are 0, 1,2, N6, Nso,. . . A1so, rr, is (capable of being) c:ofincil in N if there is a function
/:n---+N n'ith V.\ € N:i e rt J(i) > )
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LECTURtr 5

Yoneda Representation (9 / 23)

The natural operations on (A, n)-algebras have an algebraic structure.
The derived operations on (A, n)-algebras (which are contained in the
natural operations) also have an algebraic structure. How do this struc-
tures relate?

The answer will be easier introducing some more categorical con-
cepts. Consider a ring A and the following 'equation':

ring A categories

Homl(A,M)=M' ?

What is'?'. In other wolcls, what is the analogous in categolies of
the isomolphism betr,veen the set of ring-homomorphisms { : A---+I,f
and ,LI itself? (r'ecall that this isomorphism is the corresponclence

I + dl(t))
The ansrver begins surprisingly; considel the functor

lt \
At .,4^\ lS.ts

defined as in the follorving cliagram:

f.

Now recall the construction of the product functor in lecture 2:

O:XxU---+Z
25

A(A, B)

-.0,/ \"-,
/\

A(A" B) A(A, B')

\/ho- 
\ ,,t -.1
A(A" B')

B

Ihl -\>

I
B,

A

,l
I

A,
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Let us see it in more detail: it defines two maps:

X I Func (J/, Z) X r+ O(X, -)
a,nd

l, g FLrnc (,Y. Z) Y r+ O(-, )')
Flom this point of vieu, the map horna can be interpreted

(5) ilil : Aol'---+Func (,4,5ets)

and

(6) ilil : , ---+Fun c (.AP , Sets)

It is a matter of taste which one we will study first. I would plefer to
start with '^' to avoid some confusion a,t fir'st with the reversing of the
arrows in the domain of '-'.

N. Yoneda (arouncl the vear' 1954) u,as the first to call the attention
to the marvelous ploperties of this functor. It is callecl now Yonecla
representation, but it is mole, in fact it is a full embedding.

Let us consider tire diagram:

/ 
)-: il;-/ 

F*nc(,4oe,5ets) : SetsA"'

A(-, A)

Jo-- iJo*

A
I

I

I

I

I

I

I,f
l

I

1

I

I

1

t
C

CYo-

A(-, B)

-r/

\
\

A(_,C)

That is how h6il behaves: for each object A e A you get a functor
A(-,A) : A"n----s5ets that behaves contravariantly (i.e. it 'reverses'
the arrows), but muchmore: for each arrow f in A you get a natural
transformation, / o -, between the corresponding (to the respective
objects) functors.

Now we have a thorough description of a morphism

A(A, C) J+ nat(A(-, A), A(-, C))

,'4'
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Yoneda,'s obselvations :

1. tro-rn is 1-1 nn,rl onto.
2. (rea111' containecl in (1)) Simplify notations for a possible proof

ancl rvrite T : A(-, () so that

A(A,C) f+ nat(,4,(-,.{), A(-,C'))
becornes

7'(,4) 5 nat(,A(-, .4), 7)
\\iith this nerry presentation we have:

PnoposlrroN 1 (\oneda's Lemma) . For all T e SetsA"o, for all
A e lAl,

nat(/(-, A),7) - T(A)

This is the 'r'ight' generality of the statements above. We could
have proved (1) above, but in fact we u'i1l see that we do not need any
general features of A(-,C) in the proof.

Pnoop. Fix .4 , fix A e lAl, fix 7 : Aop---+Sets. First. 1et us

contemplate for a while the follorving 'diagram':

T(,A) nat("A(-, A),7)
Both sides are in splendicl isolation . . . Hou, can you get from one to the
otlrer? Gir.,en .f e 7,4, you need to find a natural transfolmation g(/) :

A(-, A)--+7. A natural transformation is a family of arrows indexed
b1,' tlie objects in the categor'1,,': So let us take X e lAl (the comrnon
domain of both fu.nctors A(-,A) and 7). Hence \\re are leduced to
define the map if (/))x : A(X,A)--+7(X). Horv can this be clefined?
You mnst take an arrow a: X---+A and get an element in 7(I). Here
is the (stlaigthfolu,ald) solution:

"(-+) 
f .nat(, (-,A),7)

(7)
J + {p(.f)}x(a) :{7(,)X/)

Why p is 1-1 and onto? Presumably from the existence of an inverse

/ for the nlap p:

T(,4) *:t nat(/(-, A),7)
Recall the example of the ring in equation (4): take the identit,r, to the
identity. Let r-rs do the 'same'here: if ) e nat("4(-,A),7), clefine

(8) ,.,,()) : )A(idA)

Now come the verifications:

1. y' is rvel1 clefined



;( l),
..4(-\. - l) '--i-rji f (X)

tltl
- o fl lr({)tlt :lI)- Y

A(Y.A) """ r()')
conrmutes, let be a e A(X,A), so we have:

P(.f )x0 - - - : : - - - -> p(.J)x@) : {T(r)}(.f)
I

I

o €l i7(€)

' -:( / )'
a o ( -ri'-':. {Tla" €)x.f) = 7(€)t(r(r))(/)l

(e)

LECTURtr 5. YONEDA REPRESENTATTON (e/23)

2. g is well c1efinec1: is it rea11r, a natural transformation?
r ^ ^ ^/. :-1.J.PU',-rLl
4.{o9:id

A11 of them ale relatil'ely simple:

(1) is imrnecliate.

(2)p is a natural tr.ansforrnation. Fix )' -! X rn A,ancl / € 7(A).

To see that (9)

7 is a contra,r,ariant functol from the perspective of a, so the ecluality
in the lorver-right corner ho1c1s for all /.

(2) \\rhy ti, o p : id? \\ihy, given a' nat*r'al transformation
): A(-,A)--+7. cloes {p o yr}: )? \\re have to check

Vx € lAl, l{e o u}())lr : )-{ : A(X,A)--+7(x)

Nor,v in order to check that these two functors are equal we have to
evaluate them. that is: fol ali a: X---+A check

(10) (r(u()))).r(o) : )x(o) (€ 7(x))

Now is time to start deciphering the meaning of (i0). By definition of
el;:

t ;(u()))) r (,r) : (r()r(id1))11,r)

now apply-ing clefinition of p in (7)

: {7(r)}()A(idA))



A(A, A) ^'n ' ,(r,tl-"'l , l''.,'
.A(,r'..-1) "'t 'r(x)

As you see, the proof goes in the

(3) Why is / o P : iclr(.+)?

App1,'ing the definitt' 

*,ri.l i:'
:

LECTTTRE 5. YONtrDA REPRESENTATTON (e/23) 2e

Finally, using the fact that ) is a natural transfolmation, is easy to see

that the diagram on the ieft commutes, and hence the equality (10)
follows (diagr.am on the right):

),r
id.{ ---:-- )a(irla)

ii
',- o o ',7(9)

I

, )r' t
rL _ _ i'_ _. )r(r) : {Z(o)}()o(ic1.a))

only' possible way you can go . . .

Let / e TA, rvh1, is {(e(/)) : .f?
g rve have:

p(.f )a(ida)
7(id/)(f )

{id'a}(/) : /
n

All this is exactly was is going in the case of rings (reca11 'equation'
( )) with the isomorphism

hom,1(A, nr1 :+ u ).+ )m
The only thing is that in A there is only one element, but in Cat there
a e many objects which piays the role of 1 in the original construction
(see equation (8)).



LtrCTURE 6

More on constructions (9125)

We could summarize Yoneda Lemma saying that there is an explicit
map between the upside and the lowerside paths in the following diagraml:

(SetsA"" 1on x Sets/"*'

\
,5,

/

AoP x SetsA*

I'? x icl

eualuation

Sefs

That is, for evely A e A'p ancl 7 e &tsA" , the functors nat("A(-, A),7)
and 7(A) ane isomotphic. Nice plesentation if rve discount the fact that
we do not know what 'isomorphic' is . . . but:

DpprNrrroN 4. Let X be a category. Two objects A, B e ,t are

isomorphic (in .T) if thele ale .Y-morphisms A --l-+ B and B -!+ A
such that:

l.go,f :icla
2.J'o9:id'
lVe plovecl only that ?'(A) 5 nat(.4(-, A),I') is a bijection. But

there is more:

PnoposruoN 2.

(11) V : p(A,.r) : T(A)--+nat(A(-, A),7)

z's natural in A e lA'rl and T e lSetsA"o I

lTrvo remarks neecl to be macle: (1) Given a functor F : X---+)), it is strarght-
forward to check that lt'f 1 /oP----s!oP is afunctor. (2) StrT could be'enourmous'.

31
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Pnoop. Exercise: use hear.il)'the fact that 7 is a functor. tr

The foilou,ing cololiar5, is used in practirre more than \bneda Lemma
itself.

CoRot-laRy 7. If .for objects A,B e )Al, Al*,.1) ancl A(-,8)
are isomorphic in SetsA"' . tlten A and B are i.somorphi,c in A.

Pnoop. Consider

A(A.B) -:;n nat(,4(-

*l--te
t{e

Tlre facts that .f o g : td ancl g o .f : id i
naturalitf in (11) above gives us the desi

How can this corollary help us in showing that tu,o objects are isomor-
phic? Let us see some examples.

Take 7 e lSetsA"o l. Think the easiest functor you can imagine:
T(A) :1. This functor is covariant and contravariant:

A(X,x) ry7(X) !1

.$ts'p is a sort of category of "rvish-lists" for desirable objects 
"4. 

should
ha,r,e. For example. in clifferential equations, r,r,hen looking fol an ana-
lytic solution of a certain eqttation, 1'ou first obtain a genelalized lunc-
tion solution (a distribution) and then yon particularize and tlv to get
the right one r,vith the desired ploperties. In general, 1,ou look for. the
general solution to a plobiem in a place where it is easier to fincl, and
then look clown if -r,ou have an isomorphic object in the right p1ace.

In the sa,me wa\,.as the \onecla functor is called Yoneda represen-
tation, i.e. r'epresents the objects of A as the functor A(-,A).
Terminal objects.

DBptNrrtoN 5. If the functor-

T

4 ----t- tt''
-+ + idr

is representable. say 7(A) o A(-,x) for some * e lAl, then x is called
a terminal object of A.

trXAMPLtrS.

1. In (abelian) groups: {0} is a terminal object.
2. In Top, the one-point space is a ter.minal object.

, A), "4,(-, B))
Y(f\
---+
)'(s)

-n the suitable pla,ces plus the
red result. tr
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3. In lings u,ith unit: depend on what do you mea,n by ling with
unit.

(a) If you al1ow 1 : 0 then the one-element ling is a telminal
object.

(b) If ),ou lecluire I # 0, there is no terminal object.
4. A-algebras: the one-point A-algebras are terminai objects.

As 1''or-r can see! in most of concrete cases, terminal objects exist, and
looks like one-element objects.

(5) Norv considel the categorl, C1r,1;. An element * 6 C is terminal
tn C if and oniy if x is a top-element in the order of X. So,
for example, C1rri,1; has no terminal object, while Ct^,>) has a

telminal object.
(6) (one-minute quiz) \\that does it mean for Mru to ha,r,e a, terrnina,l

object?

It is easy to see that the functor T : Aop---+Sets. rvith 7(A) : 11.
terminal in the categoly Sefs/"':

+ F'(A)--

tltt--\.'l lrr.'r T(A1 : s1g1
ll-/l+-''
B F(B)

is a natura,l transformation by default. This constluction is so general
that it applies to a,hnost every case (of course there are exceptions).

Products. The \\'a)/ to obtain interesting propelties in a category is to
expand interesting construction in Sefs to Sefs/"o. Given two functors
,9,T €. SetsA" ,

P(A) :,S(A) )

x 7(a)

)P(B) :,S',(B)

If S : )'(X) ancl 7 : )'(Z), rvhat
Let us see; \i\re harre:

can P : 5' x 7 be leprcscnting?

x T(A

i
ls(,)
I

x T(B

A(-,i) = A(-, X) x A(-, Z)



./ It../z\
/\X

Now think in topological groups,
is a solution to this diagram?
ilustrative

Z
vector spaces, A-algebras, etc. What
In the case of Posets the answer is

is clear that looking

34

now considering -

LECTURE 6. CONSTRUCTIONS

:? we are the following situation:

Z

Hele the "procluct" p is the gib(r,,2) (or inf(r,;))(or r A z).
In the rnajolitl, of the set-basecl categories the product means this.

But the product is not genela1ll' available: Take for example the cate-
gorv of fiels. It is easv to realize that there can be no product there.

As u,e san'. the plocluct object arises as the prodr-rct of the r-epresen-

tation. \\ie can make this co:rstlr-rction more general: nothing prevent
us for taking mor.e than tr,vo elements. So, let 1 an index famih,. and

take a map 1 ]-, A, that is a family of objects (X;);.r e lAl

t,

/l\
l\

r;, \
nel 

\'
\/4 \

xj
such that (... ,ti: iTj ot,...)iet.

There ma1,be no such. object in "4. Though it
at ) 1I,) e Sets/"'' thcre ilil/ be

II Yt:')
ieI
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This can be sumarized asking: there exists il;e r X; such that

)'(II x,) = II r,(x I
ie | ;€.1

(In words: I)oes Yoneda lecognizes the proposed object as the prod-
uct'/ )

Equalizers. A sma11 graph in general is not a categoly (the composi-
tion of arrows is misseci). but thele ale some ca,ses in which it is:

(n) .
(6) r ------------- o

o

We n'ill see they play an important rol in categolical concepts. Take
nou', fol example, the known construction in graph theory:

{g e C: -s(e) :'(g)} e C: --- u
5

What is this set? It is just the equalizrr (a1so called differenc:e-kernel) of
s and r (the collections of n,itnesses that think -by personal experiencel-
that s and r are equal, no matter lr,hat .s ol r do to their neighbors).

DBprNrrroN 6. Given trvo maps in ,4 with common source and
target

6O

an eq'ualizei'fbr' (cr, il)
diagram

,3

is a map e as in (12) sr-rch that in the follorving

E
I
:

)'t'.

:

for all arrow I such that at: CJ, then there is a unique arrow t that
factors through e, i.e. t : eI

(.)

(12)

\

--'
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What is really happening here is:

)"(E) " ' )'(A) -I("]* Y@)
Y(tJ)

ee(-, il - r q r{(-,A) 
= 

Ae,B)ua- po_
This are two point of vieiving the same thing. Nor,v, when you have

products and equalizers yori have a lot mole.
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Flee A-algebras (9/30)

We ale going into some important concepts in (A, rz)-algebras, narnel1,

"equations", "equationally definab1e", an so on.
First, it is goocl to recall hele some aspects of the Yoneda repre-

sentation \ve saw in lectule 5. If in the Yoneda map (see equation (6)
tlrere) u,e put A : Bnt' (and hence B : Ao'),we get the folloning map
(see aiso equation (5)):

\-
B't ' . Setsd

A '+ B(.4, -)
that is

B(A,C'): BoP(C',A) ry nat(6(4, -), B(C,-))
and rve can easily check that the covariant functor have no more (nor
Iess) natural transfolmations than the contrava,ria,nt one in (6). Nlore
generallS, we have (the arguments are the same as in lecture 5):

f (A) - nat(6(A, -),7)
which is nothing else than the othel velsion of the \onecla map.

With this observations, we can prove the following important result:

T'uBoRBtr 1. Giuen a sel A and "arity function n", and giuen a

setl k, it turn.s out thut the couariant -cet-ualned functo'r

(-\. r, r-,41g tt ^ '^ ' s",,

is representable, incleed we hctue

(U;)r 'r )-(f,(k)) = }'(PA)

uhere Flk) and Pp uill be defined below.

lAgain, we are using the Ietter A to suggest psicologicallv a na.tural number,
but could be any set.

a-
!)l
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Let us explain the contents of this proposition before proving it.
We a,re asserting that thele is ,r(k) € l(A,n)-Algl for rvhich (t,")o =
1'(F (k)). That is fol each (A. rz)-algebra A

seis(k, rrt(A)) ./ uA(A) ./ ),(e(k))(A) = A-"41g(e(k), A)

Think in more familiar examples, lilie groups, rings, r.ector spa,ces:

1. Groups: On the 1eft, the elements are functions i ++ g;. nhich
clefines a free group in k generators F'G[. ' ' g;- ..] that is, lr,ords in
!; and g; $. ex. 9;9ig; shoulcl be thought as r;:rrr;1) identifl,ing
g;A;, e and gigi, (forma1l1,': gtAt - e - g;g;).On tlie right:

ir+r;
G

1

,1:;. gt tJ Ji 'FGl"'sn
2. Rings: On the left, the map i r+ g give us the ringZl---gt. . ');ex.

On the right hand side, we have the ring of polynomials in k
free generators (Think of the elements of F(k), the polynomials,
as 'operators' from A*---+A defined as the evaluation in each
variable).

ir+r.L "',,,,R
,+ gl

(e.rtend 'nat ulally')

3. Vector spaces: On the left hand side, we have IR(fr). On the right,
we find linear transformations extended by linearity.

k

,+ gtl

i, r-+ n,1- 1rl1'+V
tt.t-,/t t-+ 0;l -,'

i-l^, -/ g, * r, (extend lineally)
l,\'

Once one of this examples rang the bell in vour brain, we can continue
u,ith the gerreral case. that is the proof of the proposition 1.

Pnoon. [ol1,r'oposition l] Ler

-Fr : nat((Ua)4, L'r)

endowed rvith structure of a (possible too large) A-algebra. Let Fp the
subalgebra of Fx generated by the ,krtu plojection transforrnation.

Now let us define P6. \\ie rvi1l define it inductively:

Po: U X.
0<r

- x,-
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rvhele r is defined as in the last section of lectule 4, ancl Xo is

/\
.Y, -,+u u lt,) . (U-rr)'(', 

I
.ef \ 6(cr /

So flp is a set even thou1h Fn could be a big c1ass. (Notice the
'similarity' with the constrttction in lecture 4: thele we rvrote ,(o),
here we have {c"'} x o). In Px the elements are tuples. (Think for a

moment in lings again: take fi ,. . ., J',, pol1'nomials in the rrariables
i : (rt,. . ., rr), 7: a polynomial in n variables, then p(h,.. . ,./,) f" u

polynomial in rr. narnely r.,(./r(r,;,. .. , r(t)).
k:.YoC "' C-\B g "' C X., C "' C Pp

tl
I lesr,ricl ion to ,f I

'l ? lA-rromot-+
ur (A) A

The construction in +-direction is done b.r, induction. We are going to
illustrate it by an example: f 0 q X1. We knorv

vr :.\o.J u ({"r},}'jr-t;
u€A

In X6 the map is already-given: n : Xs--tlAl (recal1 the notation

lAl = U"(A)). So for the rest, let us talie .u € A,

-, .\,i'-r' ,lAl'(-) - ,lAl

It is clear that this construction obeys (+ o +) : id and (+ o +) : i4
and + and c ale 1-1 and onto.

P; is ca11ed, in r-rniversal algebra. .furtctionally (totally) 'Jree ,\-
algebra, or also polynomially .free A-a1gebla.

Now let r1s go to the seconcl part of the proof:

(Lro)* - )/(F(k))

Consider the diagram (7 is the inclusion):

k

1
\ or.-:1

lAl I l.ul

A

Fn
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Tlre tricli1, part is given k -+ ],al to get a map F*---+A. What u,e

will do is to constluct an a,rrow a: Tp---+A such that dlu -- a, so the
restliction of a to fli rvill give us the clesiled arrow.

How carr u,e expect thele is such a thing? Consider

) : t/N---+Ur

),1 : (t/5 (,4))k---+t/a (A)

What is the only piece of information we have?: the a,r'r-ow a. So

)r(r) € lAl. Is ) r-+ )1(a) a A-homomorphism from fr-+A? Let
o € A, 1et ( € lTo;"t'1. For each i e n(a), r,r,e have €i e F1,, so \ve can
apply (€n)r1o; € A. Thus

so taking € e (Fn1"@) we have:

tl,,
(13) ,,, 

",r*
.,:(".(;..' ) --' (,r(".(; "' ))r(r) i r(... ((;);(r)...)

Why this ale the sa,me? You have just to recall the definitions of c^.,,

Fp, etc.:

(; , Lt---+LIr (, e n(c",))

also recali
(...t ...l - ',

-1"'(, "' r : 1'{ \1 /'t/'(r/ 1'1('t * 
' r '^

So in the attempt to evaluate the path through the left-bottom corner
in the cliagram (13) u,e get the path thlough the upper-right corner.
So finalir. consiclel the map u + -r,lpr and r,ve are done. tr

So )'(f,i,) ancl )'-(P6) are isornorphic to a thilcl thing, elgo

),(I,,*) = Y(Pk)

(fo;"t.) 

- 
lAln(.)lt-,l l.,ll

:F* 

- 

lAl
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Also rve have fol Fn the following:

(14) f1 = nat([il, fro)

(15) ry nat(/(f,a, -), t/o)

(16) = Ur(trr,)

The step from (14) to (15) is because of the observation we made at the
beginning of the lecture. and from (15) to (16) is just Yoneda Lemma.

An important ca,se is the palticular case k : 1

nat(Lt, Uo) = 7,
which ale the derivecl unar]/ opelations.



LtrCTURE 8

Equationally defined classes (LA/2)

EquatroNs. Given (A,") (some people have called this species) and
considering (4, n)-algebras and the functor

U (o,,) : (L, n)- Alg--+Sets

by a (A, n)-equation in "set-of-variables" X, rrrean any ordered pair

": ("rre2) of natural transformations

(17)
_, €1

rl-,\ 

- 

rr
"(l.r) u1A.n)

C2

Equivalentiyl, any pair of members of U6,n1({a,"y(X;;.
VRt toIry. If (A, {A,},et) is a (A, n)-algebra, we say eis ualid (ho1ds)
in (A, {A,},e^) if

(er) p+,1.n,1,1 : (ez) 61a,1.1

Generally, one asks about an entire class t of equations, whether in a
given algebra, euery equation from t is valid. So let us denote

((A, 
"), t)-ALg : {A e lL-Algl : each eq. of t holds in A}

It is immediate that

((A,"), t)-ALs e (L,n)-Alg

VaRrntrBs. Aoy category of the form ((A, n),,t)-Alg for some set A,
arity function n and class t is a uari,ety (in the Universal Algebraist
"1ingo"), or an equati,onally definable class of ((A,"),t)-algebras.

Group theorists like to think in terms of the signature {o, ( )-t, "}.Then they restrict to study "subvarieties" (abelian groups, p-groups,
etc.). Lattice theorists think in term of the signature (V, A, 1, 0). Also
they are interested in particular varieties: distributive, modular lat-
tices, etc. Then they go to sub-sub-varieties an so on.

1In eq. (17)'s setting, what 1'ou ask is what )'ou get. In [/ia,,;({a,";(X))
things are somewhat encocled.

43
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QuosrroN. One is temptecl to trl,to characterize the general class

(18) l.1]l g ((A, 
") , t)-Atg

or in a clifferent setting

Birkhoff's Thm.

Beck's Thm.

What can you say of IJ or e that would be a statement neccesary and
sufficient for the class .8 to be a variety?

Historicaily first Birkhoff's theorem provided an answer in the lan-
guage of H S P-classes. The other question was answered by Jon Beck
in the early sixties. We will see that Beck's theorem provides a simpler
and cleaner way of stating the problem above. In order to formulate
Birkhoff's theorem we need to define before what are subalgebras, quo-
tient algebras, congruence algebras and H S P classes. Let us proceed
in this order.

SusA.LcpeRAS. Fix (A,r),t and let V : ((A,r), t)-Alg. Let A be
an algebra from /. What does it take for X e lAl to be an element of
v?

It is worthwhile to see in parallel both pictures to see what is going
on in each level: L-Alg and Sefs.

Sefs

Let state filst an elementarv obselvation:

PnoposruoN 3. The .folLouing stu,tem,ents nre eq'uiuaLent:

l. A stLbsel -X C lAl "is" (the underlying set oJ) an ek:men,t oJ

V, and tl'te inclu.sion X l+ lAl the underLying .functor for a

hont,omorplrism X---+A of V.
2. For ull a € L, .for all n(w) -i+ X, thr: e.ffect c,;(7or) € X (q lA])

i.e. subset X is closed in l,4l under all tlte oltera,tiorts u from \.

,x

,4

Sets

XA
II
tl
tl
tl
ttxc lAl
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Pnoor'. (t) + (Z), j is the underlying functor j : lfl of a homo-
morphism f : B---+A, then inspect

Xn(')

x-
to see that the clesilecl conclusion is va1id.

Conversely ((Z) + (1)): Suppose (2) happens. The equation i,;(7 o

") 
: j(?) has unique solution, so it is ? : r-,,(r). (in fact this is just

to say: cleclale the operation in the subspace to be the same as in
the bigger space) because it does rvhat I want it to c1o). So making
u (4, n)-algebra out of -X such that 7 "becomes" a hornomolphism is

easy.

Bul, wh1, c1o equations fi'orn t holcl there? Let's see: If B i-+ C
are two A-algebras and / is a homomorphism, and if l/l is 1-1, then,
whenever (rr,rr) is an equation C satisfies, then B rvill satisfy it too!
see the diagram:

tBf l/ln tcf

-1

,",r1

l/l
lc

Whichever u,ay I commute the srvitch (Whicherrer path I choose at the
fbrk) I get the commutative squa,r'e. So rve ha,ve

l/l o(.')r:l.fl o(e2)c

Now applS,ing this nlaps to b e lBl and using that ]./l is 1-1 \ve can
easily check that (e1)6 : (rr)e. tr

l.Tl is an S-clctss in (A, n)-Alg if it is "closed uncler tire formation of
subalgebras". For example, abeiian groups is a S-subclass of groups.

QuorteNr ALcpsR,{s . If B i- C aLe trvo A-algebras ancl / is a

homomorphism, and if i/l is onto, then, whenever (e1, e2) is an ec;-ration

lrlr(-)
:lBl',('t 4,--- lA;,,r'tI I 

'i'('\ 
';'1,| ,,, I

Bl alal
J

1,",,'
I

ez) e

1
l'

B1

("r),
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C satisfies, then B will satisfy it tool The proof is basically the same
as before:

If l/l is onto, then l/l* ir onto (by the Axiom of Choice), so

("r), o lflr : l/l o (",)" : l/l o ("r), : ("r), o lfl*

so now apply to op in both sides. (The same law of "cancellation"
l/l* o ar : id that holds in the previous case, holds here in the 'other'
side).

So we can ask here: Given B a ((A,n),t)-algebra, X a set, and

f : lBl---+X onto in Sets, when there exists u ((4, n), t)-algebra C
such that Ut(C): X and / homomorphism?

V B f ,C
, ,when?

ltl

Sets | 
:t onl,o v

lBl ,; X (: lcl)
l/t

PRoposrtloN 4. The follouing statements are equi.ualent:

1. There erists a unique algebra substructure C "on X" (lcl - X)
such that p: lf I for some (unique) f : B---+C.

2. 1 :aet {(br,br) € lBl x lBl : p(6r) : p(br)} is a .subalsebra of
B x B.

DlscRssstoN . If X and Y are two (A, n)-algebras) we may take lX I x
lYl and try to impose a (4, n)-algebra structure on it. Optimisticaliy

VTBT tcf

'"'"11'
lBl

lu'''
cl

ez) s ("r),

onto

l/l
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hoping that the projection functions

l*l

lxl l)'l
tur-ns out to be homomorphisms of (A, n)-algebras, i.e. given cu € A

(arity n(l")) and a tuple rz(c,;) -i+ lxl x l)'1, seek w(z) e lXl x lYl such
tlrat r"(:)x : a(zx) and c,;(z)r : a(zy),1.e.

(lxl " lr;;"('r/F\

Yl

\

lx

/

solution ot it!:

lxl' lxl x lti I l)'l'
1,11./\l

.-Jl ,/ \rt'y l.J

L/pr, \ |l/ \+
l-{l l)'l

The specification of the nature of the ploblem is the
- - (... ^,... )-\)
: (" ' (','.u,) " ')

so r,;(z) : (r(rr)trt ,r@t)lt)
A family of maps {/"} i, jointly 1-1 if

Vr1,,r2[Va.f"(rr) : /"(rr)] * tr1 :
Note that projections are jointl), 1-1.

Next class: the constluction of 7r.



LECTURE 9

Congruence relations and quotient algebras (tO/7)

Congruence relations. Let us review congruence relations in the
category&ts. Givensets A,B and afunction f : A---+B)a congruence
relat'ion of / is the set

:! : {(*,,*r) e A x A : fir) : I(r2)}e A x A

It follows immediately that it is (as a subset of A x A, as a binary
relation on A) a reflexive, symmetric and transitive (RST) relation on
A.

Conversely, given a RST relation E on A, there is a map f : A---+?
withE -=y (Just define f :A---+P(A) with f("):{re A:(a,r)e
Ej. cf. Halmos).

Let us phrase the above concepts in generai terms. Let us start
with the concept of congruence relation:

KpRNBt- PAIRS. First we have two maps, fr7tr2t from :y to A

Il

Prr tlll'P
pr2

xt2

Notice that r1, r.-2 &r€ jointlv monic. Thus, u,e har.e a diagram

rl
A f ,B

(1e) a,-\__.lttt 
\

T

with / o :u1 : / o 12 ancl whenever' 7 and a1,a2 satisf5r f o ct1 - f o or;
there is a uniclue a : 1'-+ :y such that ao : tc,a ct (a : 1,2). We sa1,

that 11, 12 is a kernel po.irfor J. 
4e

:r
,L2
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We rviil see that \\re can also state the concepts 'jointly monic',
'reflexil,it)r'. 'st mmetry' and 'transitivity' (JM,R,S,T) in categorical
terms, and so state the above result in terms that are totally general:

PRopostuoN 5 (in Sets). 1 ;1 pair of maps E -= A is a kernel
pair of some f : A---+? iJ o.nd only if

(E -3 A): E * Ax. A

is JMRST (joirLtly-monic, re.fle:r:iue, symm,etric, transitiue).

So let us state what cLoes it rnean to be jointll' monic. reflexive,
summetric and transitive relations in the general context. Let us try
to generalize these concepts to a general categoly. So assr:me .4 is an

albitrary category, ,,1, B objects and A *l+ B and alrow h A.

JorNrly \,IoNIC. The arro\\rs it1,12 are jointly monic if whenever rve

have the follorving cliaglam

t1 I1
T ----------1 E ----------- A

t2 fr2

with r1l1 : :f,ttz and r2t1 : fi2t2t thet t1 - t2.

It is clear that a kernel pair is jointly monic: If rfi1 : nttz and
rztr - r2t2 as above, why does tt : tz? Because (by diagram (19))
there is a uniquet:T---+E with ri - r1l1 and r2t: x:2t2atd hence
.l _.t_+L7-L-02.

RpnlpxtvlTY. Look at the diagram

I1

That is rvhat leflexivit5r is: the existence of a map A back form A to
E'. srrclr that Vi : 1.2: x a r:.r'3-i.

Again, it is east, to see that a kelnel pair is reflexive.

SvHul,tBrRv. This shoulcl mean that the process of flipping elements in
A cloes not matter. \!e just have to get a free-element rvay of describing

lThe 'if' part of this proposition does no hold in an arbitrary category (one

reason: kernel pairs could not exist).

A

1,,

I

A
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that flip.

with 11 or: 12 and fr2or - t.1.
Notice again that a kernel pair is symmetric.

TRausItIvIry. This is a little bit harder to express categorically,
because is not a map from E or A, but from something else that even
could not exist in the category. Transitivity is saying that the object
7 should have this pair of maps to A

/\

/8
/\

factoring through E as in the following diagram (the ordered pairs
above each node are an example of how arrows operate)

(a,b,d)

T

Iy
D- tL+-L

.. 11\ .t2 I\ ti\lt

=lr\ "l ltt
tl
E

(",0)/ \,u,,,
EE

(20) Pr,/ \'', ?"/ \',
ru)/ t(o)' t(,,)
AA

\l--'
A

So the way to express transitir.ityis: the arrows rr,T2: E---+A are
transitive rf for P B a pullback for the left diagram below, for all a, B
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there is a k that makes the diagram on the right commute.

,/ ,,

A PB
What if youl category does not posses pullbacks? In that case is harder
to explain rvhat transitivitv means: You have to ask conclition (20) fol
all test-maps

T

(21)
,, ', \a/ PB \6

/\

in the uppel square in the cliagram (27). hercfse; Check that kernel
pairs are transitive.

DlscRBssroN.2 A slighty clifferent rvay of reformulating 'fi'ansitivity
is: Given a test object 7 an a pair of maps as in the diagram

r __I!__- a __!!__- t
Pz 12

let us nrite (to eas1, notation):

ITaP:Al
T2ap1:A2

Iyap2:A3
l:24p2:A4

(the notation is motivatecl 1ry the observation that if E C A x A and
T C E x E, the elements of 7 n'ould be 4-tuples a1,a2,az,a+).

ltrow, for all 7, pt, pz

laz: usl - lc : T----+E

lvith 11 a c : al ancl 12 o c: a4.

ExnRcIsp.
?This is an asicle that u'as given at the beginning of lecture 11 a plopos of a

comment about the material of this lecture. That is n'hv lr'e clecided to inclucle it
here

E
l

I

I

]] r-l
Jffr

I

I

)t
-------------i A

.l'2 / I
,/,/

",//
,/r/ O

E
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1. This reformulatecl velsion of transitivitl, is 13611i1,a1ent to the pre-
vious one.

2. Each of the notions JN,'I, R, S. T fol rt,lr2:l is equivalent with
its counterpart JM, R, S, T for

.?"t o -Al-, E) -----_- A(,8)

.t2o-

if and only if

vr €lAl:A(r,E) 
= 

Ag,E)
,Tzo -

is JN4,R,S,T in the nsual set-theoretic sense. (Hint: checli first
JM ancl then assuming it check R,S.T).

This is one more illustration of horv the Yoneda, representa-
tion is r-rsecl to give iclealized pictures: lve con1c1 simply say

) (r', )
) (tr) ---- ) (.1)

Y( ,'r)

is JNI,R,S,T.

Tlre A-algebra case. Let E,,4 be two A-algebras, and rlr1.12 two
A-algebra homomorphisms. Neccesary and sufficient conclition for

E__!)___ A ___[____"
,L2

to be a liernel pail of some aigebra homomorphism / is that

l'22) lrl --n- l.al.
I2

be the kernel pair of some function lAl---+? (if and only if be JN{RST).
Why? Just checli carefullr, the conditions (for each property J\tIRST)

on the corresponding diaglams above. For tlansitivitl,, the easiest rva1,

to see it is to notice that congruence relations a,re constluctecl set-
theoretically.

Quotient Objects.(In genelal) Consider the cliagram (22) and

.f (o) -- {r e ]Al , r: rz(e) rvhele e e lEl A r1(e) : a}

There is no leasonable rva). for J@) to be a A-algebla (: {r e lAl :

lpeE:p:(a,r)))
Let

Q : {, € P(lAl),,5 : .f(ct)na e lAl}
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We wish to make Q a A-algebra in such a way that / becomes a
homomorphism:

Given o € A and n(a.,) 
(':5') 

Q *" want: For all a € lAl"@), i1
q : f (at), then ,(q) : f(r(")). This is our dream. How can we
reahze rt?

If / is onto, how then to define ,(ri? Fortunately there are tu-
ples a e lAl"@) with /(a;) : q; fot each i e n(u), and (even more
fortunately) if a and (t' are two such

f(r(o)): f(a(cL,'))

Pnoop.If f(a;) -Q;and f(o'):q;,thatmeans (ot,o') € lEl,that
is

p: (...(o,,o';)...) e lO1"t'l

*r(r(p)): a(rlp)) - a(...ai...): r(o)
and

*r(r(p)): a(r2(p)) - w("'a'i"'): r(o')
So 4.,(p) : (a(a),r("')) and hence /0 : /0 tr

This is a principle you see commonly in algebra (groups, rings,
modules, boolean algebras, etc) where we have elements like e,0,I
etc. by which you can recover all cosets form the corresponding (e-,e-,
etc.) cosets by translation. This is not the general case as the following
simple example in lattices shows:

Take the set of functions / : R.--+[0,1]. Consider the operator a
(the support) a(/) : f-' ((0,11) q P(R) Here for example, [1] share
its class with ali functions, but [0] : {0}.

So it is very bad preparation for general algebra to start with mod-
ules, groups, rings, in which the kernel is a subobject. Kernels are
subobjects in these categories, but this is not true in general.

A"@) 

- 

Q.@),ll.,l,l
IAI ' ,Q
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Lawvere's Theorem (10/9)

The global picture. The last two lectures we have been a preparation
for the formulation and proof of the characlerization of equationally
definable classes. I am going to give you the globa1 picture of what is
happening.

Given a A-algebra A (: lAl,@o),ra)), and functor (between lAl
and some sets)

xL,rer P ,g
fi2

with p onto and n1,,tr2 JMRST, let us remark the following facts:

1. p is the coequalizer of (rr,rz) if and only if (rt,rz) is the kernel
pair of p.

2. There is a unique way to make Q a A-algebra for which "p is a
A-homomorphism"

lA ._ _;_: a

in the long lun

u) : Ll oTl'r(u) o o''\') : Pa o o"(t)

The same is true if'r,ou use cu'. That is, any particular opelation
has onh, one way to rnake Q a A-a1gebra.

3. There is a nnique r,vav to make Q a A-algebra for nhich "p is a
A-homomorphism" if and on15z if

t-. - \
-\ \rt'r2r 

..{l . l.4l

is a "snbalgebra".
55

lA;'('r !) lQf@)

l"''''l
, ol l,o

1.","1



56 LECTURE 10. L.{WVERE',S THtrOREM (10/e)

4. If both sides of (3) ho1d, then (1) is equally tr-ue at the lei,el of
A-algebras.

5. In palticular, reading off parts of (1)-(a),

ilJl
x ----------- A

L2

in A-"41g is a kernel pair if ancl only if

'rr I

|\.|----------------* | ttl-'i-------.-l'

is a lielnel pair of some fnnction if ancl on11,,tf 11,12 is JNIRST.
6. An albitraly A-algebla horlomolphism A -l+ e (not necessarily

sr,rrjective) is a coequalizel in L-Alg if and onl1, if lpl is onto.

Rottaax 3 (5) and (6) (in this contert perhaps) is l,hat Emmy
Noether saw as hel first isomorphism theorem, in fact, (5) and (6)
captures the heart of the FIT.

Backtracking over these six points: nhat if rve irave eqnations, i.e.
we are in (A, t)-Alg instead of L-Alg? The answer is that everything
works the same way, because every equation holds in the quotient class
(some good reason missed here...) So we have the last remark:

7. For (L,E)-Alg the situation is no different.

Non, our goal is the follolving: In the cliagram be1or,v, we have a
functor trl(-) n,ith nice ploperties (reca11 lecture 7). \ /e u,orild like to
c1o the same thing in the upper part of the cliagr-am

(A, t)-"4J9

il
fu(-) lfr, "forget' the ecluations

I

I
\-Atg

1l
I

fla(-) lt I 'folget'the operations

]I
Sets

i.e. a functoL Is(-) having the property

(L,t)-Als(flr(A), -) = /\-,41g(A, Ur(-)) = t.s+(-)
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(for the last ry r'ecall (t/i)A(-) :Sets(k,Ua(-))) How ca,n we define
trr( l)? For each e : (et.c:) e t.

. (.r),
l'41"'"' -------- lAl

( ez) a,

you want them to be ec1ual,

-{ 'i-) t, 
-t] - lAl (: lA x Al)

and [_J..E e( Al"('); c lAl " ],{l hence is a set. Let F be all RST
subalgebras of A x A containirLg E. Let E C X : )F. So dellne
Ft(A) as this X.

Holv to see that this will rvolk'l
(t) ,4

lo 

n.-"

("r,"r) T (u (A, t)-alg.)
Whatever A-homomorphisms collapses together, it is guaranteed that
it will collpases together e1, e2 too.

. A-hom

Ft(,4) : AIX
It is the same construction )rou clo in abelian groups, etc.

A11 ingledients are ar.,ai1ab1e to sav two of the three formulation or
characterizations o1' eqluational c1efinab1e classes:

(2) Larvvele's chalactelization of ecluationally definable classes of
aigebras as ca,tegories rvith explicit functols to Sets.

(1) BiLkhoff's HSP variet-v theorem.
(3) Historicallr, the 1ast, but the most generai is Beck's theolem for

varieties (over Sets; over anything).

Lawvere's Theorem.

TuBoRpll,t 2 (Lawvere). ,4 category A along utith a functor IJ :

A---+Sets is "essentially" a uarietrl (equationally definable class) of
algebras if and only if
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7. Each Un(-) is representable (for all k e lSetsl). (A has all
"free" objects).

2. A has coequalizers and kernel pair'-< (of pretty muclt. arbitrary
single malts in A).

3. (Frr)
(u) -a nt,ap p : A--+Q i,n A is a coequ,a,lizer (in A) ,f nnd only

i.f

tj(p)'--+Lr(Q)

is ortto.
(b) .4 pctir o.f malts i,n A

J1
I ----------: A

It2

is a kernel pair of maps in A if
1 (r,)

/ (-Y)------- ttt,ql
I-(r'r)

is a JI,IRST pair o.f .fu.nctors.

There is a partial 1ie here: it is in "essentially" ancl "equationally
definable class" (hele refers to sets).

A uoRe GtrNtrRAL ctoNCtrpT oF VARItrTy. Let us consider the cate-
gory (A, t)-Alg, r,r,heLe A-arv class or operations ("(r) a set. u., e A),
t still a class of ecluations.

The lecluirement to be a variety is that

(L,t)-Atg
l
I

I

I1' ] i [r'ee functor' .E
I

li
Sets

have a free functor with F(k) representing Ur(-).
Now, there are slightly more varieties. An example to convince (at

least...) topologists:

KT,

t1
trl lF:

1l
Sets
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whele KTz is the category of cotnpact T2 spaces and continuous ma,ps,

[/ is the underlying point set functor, and ,B the Stone-Cech compact-
ification (for discrete spaces).

Recall that t/A(A) : Sets(k, U(A)) and consider:

k + tl(A\
I',r,s,r-.4

l

lcont.
0a;",

Now take the smallest closest space....etc. As to (FIT), (a) and (b),
...CO\4PLtrTE THIS PART

So the theolem savs that those topological spaces can be defined by
opelations and equations! What are these opelations and equations?
\&'e will finci out in the proof of Lalvvere's theorenr.

Pnoop. (of Larvr.ere's theorem, idea) For the € we harre seen

enough ...
In the other clirection, (1),(2) and (3) implies that there is a variety

on A. Let A be al1 possible na,tnlal transformations Lrfr--+.(-i,lor all
possible k. It is better to organize them, so 1et us define the following
categorl, @y;

lOrl : lSetsl

Orr(1,n) : nat([/",Ut)

(here l&tsl pla1,s the rol of the arity of the operations). There is a nice
functor

Sets 

- 

Ou

tJ-+n +Ll'l :- o.[

i.e. given an object .4, define the map fi'om Lr"(A')---+Lrt (,{) as foliows:
take an element of [,I(A) (a map n -!+ U(A)) ancl compose it in the
reqr-riled fblrn to get an element of 't,t (u o / is an /-tuple).

Now, Oy contains all u,e rvant (tr-"---+[/ goes to Oy(1,r?) ). tr

Let us leacl fol compact-I2 spaces (i.e. in the catego\, 71K) what
we have so fa,r': nat(L-k, t/) are the k-aly operations on'HK.. B), \'onec1a,
it is isomorphic to U(p(k)). Ohl, ultrafilters on /i;. Take an ultlafiltel
u e tl( B(k\\

- \r \ t /

k
Iic u(a\ e AI

A
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Some people would use the notation

(a)(") : 
1l+ 

a; e A

others, the presentation 
--+

u e p(k)

So surprisingly Lawvere's theorem gives an equational presentation of
compact 72 spaces.

I

I

^l0
I

I

t
A
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Beck's Theorem (L0 /L4)

We need some definitions in order to state Beck's theorem.

SplIr coEeuALIZtrRS. Take three objects and arrows as in

!11

tt - ,t.l .--r)--- ,l .---------:A"\L.r )

satisfying

(24)

(25)

(26)

(27)

-or2

'l).f i : f)-tir --r t- --L

p o : tcl.4rr

r1d: idrl

t,25 : op

This foul equations about the five maps in (23) defines a spldt coequal-
izer situati,on.

Some rent,rLrks: We rvish p to be the equivalent in sets of being onlo,
that is why equation (24) is there. Also we want a to be a kind of cross

section for p, that is if A' and A" were sets, o is very rnuch iike choosing
representatives of the partitions that defines p-1. Thir is u,hat equation
(25) refers to. We also u,isir to say that 5 is something that in Sets
would mean d(a) : lct,o(p(a))), and this is the content of equations
(26) and (27).

LpNtnt,c. 1. Giue:n a split coequalizer sit,uatiott as in (23), 7t is in
.fact a coequali:r:r' for (:r1. 12).

Pnoop. Given map I as in the diagram satisfying tt:1 :1.vr.

t' --l---- A - -! ---= A"12 
\f
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we must show that there is exactly one (l!) z such that z o p : l. So

rve have to show:
u) l>': try z : t o o. Indeed,

zop- (too)op:to(oop)
:lo(zzod)
:(lory)o6
:(/o11) od

:lo(rrod)
:totdt:t

b) l<t: If z o P: t ancl z o p: f rve haye

z o tda,, - Z o p a o : t o o : 2 o po o : 2oidr1,,

T

So, a split coeclualizer situation gives a very 'algebraic' coequaltzer.
This does not happen in general (".g. in groups). In the diagram

E----------1V,-Zl(2)
where E: {(*,y) e Z xZ: y - z € 2Z},there is no u,a}, of getting a

map (a grorlp homomorphism) o : Z l(2)---+Z sttch that ecluation (25)
holds. To be a coequalizer in general is for more 'fluic1' reasons that for
'a lgebraic' r'easolrs.

Let us see what happens in Sets. Consider the cliagr-am

.1"1 P
L ------------ --l . ____= ,=l

ll

\'" li o
\,,
\,d, ,oP

'\i,

,1

With the help of AC (ariom of choice) you can create a map A {- A" .

Hence we can get a pair of maps rda, o o p : A---+A that corne from
one palticular tlap, 7.,.

So, errer'\, time 11 ,r2 : A -l A is a congruence lelation in Sets
and p is a coequalizer in Sets, their the whole pictr,rre fits in a "split
coequalizel situation " .

Lotntl 2. If
:t:1

A'--:\A P.A"
,L2



LECTURE 11. BECK',S THEOREM (LOIL ) 63

is capable of fi,tti,ng i,n a spli,t coequal'izer si,tuati,on (in some category
A), then every functor F front A to (a category) B wind,s up haui,ng

FIA') Y F@) !-@)* F(A")
F(*')

a coequali,zer also (in fact split using F(o) and F(5) where o and 6 are
spli,tting data for the origi,nal ((*r,rz),p).

A module theorist would say: The roots of homology theory are
the failure of functors hom and .... to preserve coequalizers. (In fact,
homology theory is the measurement of how coequalizers are preserved
by some functors).

Exarrrplp. Consider in the category of groups

p

v

It is not a split coequalizer (as we indicated), but down, at the level of
underlying sets we have o,5 such that

l'I - rpl

l{t.,'.y; e L,.z,y-r€'22}l .; lzl .-:-
1vl o

is a split coequalizer situation.
One of the milacles of algebra is ......

Spltr cotreuALIZtrRS IN AtcBeRas. Let (L,t)-Alg be our focus.
Suppose

I1
r/- I-t....-.--'....................-*-1

is a pair of maps in (A, S)-Aigfo, *t i.t there is Q,'p,o,r! making

t' (rr ),
(28) L/(A') .- d -, tr'(A;

Ii (22)

a split coequalizer situation in Sefs.

PRoposItIoN 6. In the si,tuation descri,bed aboue, there 'is a wa,y

and only one way to put an algebra structure on Q rendering p (see the
di,agram below) a L-homomorphism

J'1 tt ntt
l'------------i A ', (Q.i;)-61r

iL:2

{lr.y)eZ,.Z,y-re2Z}

lztQ)l
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in that \-AIB Q, eqrLatiorts
(rt,rz) irz (A, €)-Alg

Pnoon. Fol each l.u € A
tions r,r on Q:

. BECK',S THEOREil,T (10/14)

t a,re ualid, and p is then a coequalizer o.f

consider the diaglam clefining the opera-

(2e )

(Lrrr)"(-)

") -;;;ilg;;Yd

LI rt

LI rz

Define @: poa ron('). We see from the commutativity of the squares
and from the hypothesis relatives to equation (28), that p is in fact a
homomorphism, and in fact is the only way to put an algebra structure
on Q with the required properties.

Also, p is homomorphism and onto, hence the equations t are valid
(as we saw in lecture 8). The last thing is to check 'p is then a coequal-
izer of (*r,*r)'. Let us consider the diagram with t11: t12,

T'

, (r))

We have at the level of Sets t)(A) 4 tf t in diagram (28). Hence
have in Sets a map .f that makes the diagram below commute

Does / work at the right

(u(e11t't

{

(r/(A'))"(

,,l

I

t1(A')

t ----

-(Q

p
t, __!!__- I

iL2

_ l7l
l-\ 'f

l1l, \
tr(A) ----:- g

level? Just check

t,@)
e,(,\ r , lTyt,lll
",i l-ttt1t
A ---'---'lTl
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J' o o -/' o"' o O'(') o o'Q)

:fopoao6"@)
: ltlo ,o o.sigmo't')

: ,.oT o ln(t) o on(')

,.,. ^ /'(o)
-w'l'aJ

tr

Moral: algebra homomorphisms are just nicely behaved functions, not
functions nith something added!

One more definition in order to state Beck's theorem.

DBprNrrrox 7. Sav

l'--!---- I
il:2

in "4 is ti -split if there is p,o,d in Sets such that

u("')
{ (A') *- tJl4-!-=LtlA")

ic; o

is a split coequalizer situation.

Finally we arrir,,ecl to

TupoRpl,r 3 (Beck). Giuert category A anclLi : A---+&ts, A (and
tl ) is (are) a uariety (and its rmrlerlying set functor') i.f and only i,f

7. Eaclt Ltk is representable.
2. (a) For all pair o.f mayts

,1,-\,4 in A,
I2

A has a c:oeqrLali:r-r.for r',1;x:2.

(b) For o.ll ['-split

l' -!- ,q. i, A,
iL2

with coeELalizer ,4 -!-s arr in A,
1'(r, ) l'( n\

Ll( 
")is ct coequalizer cliagram in Sets.

65
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(c) For all U -spli,t

e'-\ e in A,
x:2

for all p : A---+Q, if U(p) : coeq(Urr,Llrz), then p -
coeq(r1, 12) .

Conditions (u), (b) and (c) seems very similar. Let us state the
slogans behind them:

(") A has coequaiizers for U-split pairs.
(b) t/ preserves coequalizers of [/-split pairs (i.e. if p is a coequalizer

in A, then t/(p) is a coequalizer in Sets).
(r) LI 'reflects' coequalizers of [/-split pairs (i.e. if p is a coequalizer

in Sets, then it already was a coequalizer in -4).
There is no simple way of translating this conditions to the ones in
Lawvere's theorem, so will give an independent proof.

Rguanx 4. The marvelous thing about this theorem is that you
could simple change once again the definition of variety, by replacing
Sets by any other base category.
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Adjoint Functors (10/1-6)

Todav we are going to plorre Lawl'er-e's theorem. It is u,orth being
prepaled just in case we neecl it rvith some machinerr,.

Adjoint Functors. Fol each k € Sefs, hte lepr.esentabilil, of each
functor

tiA : (A, t)-Alg-+Sets
amounts to the availability, fol each k e l5etsl, of a (A,t)-algebra
A"(k) such that

) (tro ft11= tJk

that is,

(-\.Et-,41s(Fr(A). -) = {, u(-)

or in other words, for ail A e l(A, t)-Algl,

L-Alg(F6(k), A) ry Sets(k, t,'(A))

In .fact, these isomorphisms or€ also natural in the k e Sets variable.

Lol,tuta 3. Srrppos, A J+ B is a frutctor such that for each A, A' e
A ue haue the bijection

AIA'. l) I -; I 6(Y l'. )'A)
onto

(in worrls: Y is "full and Jaithful" also "fully faith,.fril"). Then, giuen
a functor

x J+n
for wlLich it just so happerLs that, Jor each X € l.ryl one can choose an
Ax € lAl and an isomorphismY(Ay) = 7(X), the gir:en choices tlzus

made can (in one and only one way) be "fac:tored up" into a functor

F : ,t ---+A
67



68 LECTURE 12. ADJOINT FLTNCTORS (10/16)

(uith F(X) : Ar for all -{ e l.Yl) uho.se contpo.sition )'- o F uttlt'\-
is naturally isomorpthic (vta the ch,osen isornorphisnts.) to T (see the
diaglram belou).

This is the natural counterpart of the situation in ....topological
spaces, where from S ry X we lift to

(S,rxls) = (x,';
The above statement says no more than this.

Pnoor'. The construction of F: Given ( : X--+Y, we need to

define A* I Ay. We know

)'(A.r) 
) 'tr((l )'(.r, ) 

) F((J 
\"tAz)

tl=l :l-
llrl

r( Y) -7G. r(\ ) -TGl r(z\

rve rvould lilie ro ur(lersland is rvlrelher ) (f(() o F(()) :
The other' half of the battle: Why is -F a functor? Y- F is a functor',

SO

Y F(C,o 0 : l'1'(0 oY F(O : )-(f,(() o F'(())

TN-
'r(,. /I p'' /\,

A

) frF)Y(.4v.) '-l f(Ar )tl
-tt-:l l:tl
rllv; ,r, -. . r(t\ )7',(0

So, going down-rigirt-up, we ha,l'e a map )itr(() : f(A;;)---+)'-(A1,-).
Nor,v, hou, to get one fiom A_y---+Ay ? Simply using the bijection

t1
,4(.t.r. A) ) ;'; Br )'Jx. r.4r.)

Ytr is naturally isomolphic to 7: Giver. I 5 l- -!+ Z rve have the
diagram
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hence 'canceling' l' (because faithfulness) we get

f,((o€) :f,(() "fl(0
Finall5,. tr(id) : id is much easier (use just faithfulness).

What good is that?
The passage frorn the functor k ++ [/A in

k r+ t-lk
(Sets/;'rSets

n

/*"". \bnecra)

A
to the functol F. k r+ tra(k) is just a particular case of a mole general
conslruclion (cl. dehrrir ion E).

Let us leformulate again the conclusion of lemma 3 in a more gen-
eral form:

Given W C lX l, assume the hypothesis of lemma 3. Then, given a
functor

x l+n
for r,vhich it just so happens that, for each X e W* e 1X ] one can
choose an A,y e lAl and an isomorphism Y(A,r) "' 7(X), the given
choices thus made can (in one and only one rvay') be "factorecl up" into
a functor

F : (W)x---+A
((W)r meaning the categorl' rvith object-class W ancl hom(X,I) :
X(X,)'-), or in otlLer wo.-cls, the full subcategor), of .t with object
class W q l.t'l) with f,(X) - ,{,y for all X e l.t'1, rvlrose composition
Y a F with )'is naturall), isomorphic (ula the chosen isomorphisms) to
Tl(.*l*.

The proof is the same (just be caleful to choose objecls fr-om W).
It is this resrilt that Albrecht Do1cl u,as looking at with his concept

of super-nattn'ality.

DpprNr:rroN 8. Given functors

aA;- X
F

A(F X, A) ry X (X,U A)

(30 )

such that

(31 )
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is 1-1, onto and natural in both valiables X e lX I and A € l-41, then
f, is called the rightl adjoint to [/, and [/ is caIlecl the leJt adjoint to
F.

Small rerlark: operator theor'1, cloesn't quite apph, here: ne coulcl
lrave a situation F -U -G with f,,[/ and [/,G acljoints, but F and G
with almost nothing in cornmon.

Ex,q.Nrpr,Bs.

1. Let "4 : (A, t)-Alg and # : Sets. Then f, : f,ir,s; and
(l : LI1r,t1is an adjoint pail of functors (an e.p. ...)

2. Define F : g (the Stone-C"ch .o-pactification) and t/ : "forget
the topology". Then

TI

'\"I: ;'---.--.--.------ 'Sets
0

is a pair of acljoint functors.
3. Consider Thinli of L as (algebras satisfl,ing t)n-Atg, define,P :"introduce

as needed eqs. flom 8". Then

Lr

p

is a pair of ad.joint functors.

Let r,rs consider two irnportant particular cases of equation (31).
(1) The case when ,4: FX (for some X e X); we have

A(,FX, FX) 1r X(X,t-i FX)
idrr - - -'\x

Here rve get, using the bijectionl a map

(32) X Tx,t-tFX

wlrich is called the front adjrLnction (unit)to the adjointness (30).
(2) The case rvheu -{ : [,',4:

A(FL: A, "l) .r .\'(t,) A.t,i ,4)
€A'- - - idr.,a

Again, using the bijectiorr) we get a map

(33) FUA'+ ,A
which is c;rllcd the ttack arljrLnction (connit)to the acljointness (30).

1il{nemonic device: 'right'('left') is meant to be rvhich is to the right (left) of
the comma.
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ExpRctso. The maps in equations (32) and (33) are natural trans-
formations. (There a,re tu,o rvays of proving it. (1) The intrincate:
replove \oneda lemma in a particular case (2) Sophisticated proof:
Yoneda is rvolking behind this, take the identity, find the functor that
is u,orking hele, etc.)

This is the approach that leads to monad... But let us came back to
prove now r,vith this machinery- Lar,l,vere's Theorem (see lecture 10).

Pnoop. flawvele's Theolem]2 If t/ : rt'---+Sets has a left adjoint
F,if X has a kernel pair' (congruelrce relations of .{-isomorphisms) and
coequalizers (of arbitrary pairs ... "cliffelence kernels"), and

7. F ITr An J-isomorphism p is a coecpralizel if and only if U, is
onto.

2. F IT2 A pail of J'-isomorphisms (rt,rz) constitutes a kernel pair
if (by the rva-r,: and only if) (ff",, L,t,,) clo.

Then .{ "looks just 1ike" the (A, t)-A\g categor'1, built up fi'om A :
U*e 1s.r"1nat(LIa, U) x {k} and t (to be made precise in the case of the
proof). Let Oy be the category defined as

lOrl : lSetsl

Otr(r, k) : nat(t/k ,fJ")

ancl as composition the usual composition of natur-a1 transformations.
There is a functor' g

()
01 --------- .1'

n -!+ k - -,,p1"1 49 .p1r;

whele a "miglates" as follorvs:

n l-p(A) n, p(n)
I _ ,.,, Inl u ^, -o e | ' t;rl ,)- .l vu.r.i. .l
k Li" t_te(k) p(k)

Also there i-s a functor d (that maps sets to sets)

5"t, d 
' oy

"J.k ---,- o.f(ori//)

2See section 4 in F.E.J. Linton, Some Aspects of Equational Categories.
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so we have the following picture:

otr

F\
Sefs

U

It is not difficult to check that tr at the level of objects and arrows is
the composition of the two previous functors we defined.

Now, Oy is in the middle . . . So, let us redefine it directly:

lFull image of Pl : l5etsl

{Full image of F}(n, k) : X(F(n), F(k))

It is easy to see that this is a category and recalling the proof of this
we can check that it is precisely Oy. Hence we have two different ways
of defining it!

So we arrived at the following situation:

.T - -- 9-, O.,-,4lg ------5"6r(ou)'P\1 1

Sets ----------- 5"1rsets"r

Given X e ,t, consider [/X. How this can be a [/-algebra ? Let
) e nat(t/n,(,t), and take

)a : (t/X)k---+tt X
Next thing to do: hou, this passage from X to );g manifest as a

functol. The rest of the proof is norv F ITr and F IT2 nakes O an
equivalence of categories, atrd hence makes lf an algebra. f,

(34)
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Proof of Lawvere's Theorem (LA/2L)

It came up several times unofficially: maybe is time to introduce it
officially (it will be needed in the proof of Lawvere's Theorem).

PuLLeacNs. Given (in any category) 3 objects and2 maps

A

I

(3b) lr
I

B-C
g

by a pullback for this diagram is meant an object P and two maps

for which

l.f or:goU
2. Forallpairof maps T -!+ Aand f L+ Bsatisfyingf oa- 9ob,

there is a unique T J+ P solving the equations

r,op-a
yop:b

1a

P * ,A
I

I

vl
I

I
B
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LECTURE 13. PROOI' OI' LA\V\,ItrRE'S 'I'HNI.

information in one cliagltrm looks as follows:

p.

,r-\P..,

B-
I

P is an objec.t \\,e are seeking to charactelize florl the infolmation
of diagram (35) as

(36)

AIT,P) = {(o, b) e A(T,A) x A(T,B), f o a: s ob}

We seek P e lAl rvith Y(P) € Setsa*' isomorphic to (36).

Pullback 

- 
Ag,A)

l,"-
A('.f , ts) A(r, c)go-

This is the set-theoretic version. In general, we ask "find me someone
lvhich job-description rnatches ... If rve founcl one) as a corolla,r-r, of the
\oneda Lemma it rvi1l satisfl,- the r.ecluilements.

Proof of Lawvere's Theorem (continued). R.ecall the diagram
(3a)at the encl of last lectule.

Let ns stucly in more cletail the category O6i. The object s of @ry-Alg'
are pa,irs (A, r) such that

(37) Y(A): a,o 0

This seems a little forrnalistic, but we will come back in a moment.
Maps from (A, a) to (,B,6) are pairs A -:+ S such that Y(.f) : *o0.

What does it mean to have a contravariant functor a : Oif ---+.$ts? Fol

A

C
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each n, k

(38)

a'li

+ a(rz) +

lr
la(-,; ) ,,,

+ u(A,) ,tz(cu o "o') 
: a(u;) o a(r-.,')

+,'
l'('' l i

+ u(/) '

What is the statement (37)? The object-level interpretation of y(A) :
ao d is simply: a(rz) : A". So rve have diagram (38) with a(i) leplaced
by A', for i : n,k,/. The mapping-level interpletation of f(/) : ao0
says: let f : n---+k (in &ifs); if we ask what a,(d(/)) is doing, 

"(0(J)) 
:

- o J. Why? Let us explain me )'-(/) : cv o 0 a little bit more fir'st:

MrNr LnH,rMA. If

(/,.) : (A, a)---+ (B,b)

G,o): (A, a)---+(B,b)

then.f -gand ar,:-oJ.
Pnoor'. If we establish a^ : - o /, then J : g follou,s. So let us

prove this statement. Take a : a---+b, hence cr,, : a,(rz)---+6(rz). But
a(n) : ).(A)(,) : j;1T];l::il}l,TI" 

,
tr

So the cluestion is ttrat J is more ncLtrn'al than what you ca,n expect.
Nolv, back to the diagram

fnalu) : l, ' , R'r1
,ti rl ,t,t]- " / 1,,,,lll

a(A) : Ak-- **Bk

The commutativity of this cliagram is just the requirement that a is a
natural transformation.

Mapping levei intelpretation of ("f, a) : (A, a)----+(B,b).
I rvant to make it clear rvhy Oy-"zl]g ca1ls itself algebla. O-ltJg is a

(L,t)-Alg rvhere A : U, O(1, rz) x {rz}.

75
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For c,; € O(n,k) and a(w): Ak-+A* we can write in a very alge-

braic notation

a(a)(n):dey a*1,)

and we have the equations

a*id; : a

ct*0(f) : aof
a*(",ow') : (a*u.,')*a

Equation (39) comes from a(id6) : idA(k). Equation (a0) is a?f :
- o f , and flnally (41) comes from a(w' o a) : (a(r-.,) o a(r,;))(a) :
a(a)(a(w')(o)). This are the set of equations t.
Now, given X ,U,.P, how to concret a Q : X ---+@u-ALS ? If we consider
the diagram

x

l'(- " e)

(3e )

(40)

(41)

rvhere the maps acts as follows

x

@r-Alg 

-

i G)oP
ets -

.Sets ----------- 5"6rsetsoe
Y

? ;-u (e(-), x)It
I x(e(e(-)), X) : x(F(-),x)

U(X) + Sets(-,UX)

Now, the fact that ,F and IJ are adjoints tells us 'essentially'the equality
X(F(-),X) :Sets(-, uX) in the lower right corner. (Warning: F
and U adjoints does not tell you this is an equality. We have to use

additionally the definition of Ou in order to get it!). Hence, we have a

pullback, @u-Alg and the semat'ttical cornqtarison functor Q.
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Under certain circurnstances, O has a left adjoint ii

d,
X * , @u-Alg

o

Also a left adjoint Po to [Jct : @u-Alg---+&ts. The only thing we know
going from Sefs to Sefs being fatten enough to be able to work as a
left adjoint to U t;;Let us construct it. Consider

.A -+ O"(- ,0(A))

F oU
Ou-Alg

Now, check that
Sets ..............- S"trs.,.",,

sets(-'LrFil 

r :h:lr, '

or-simp15,

,s"t, d 
'o, 

)'setsoio

Hence Fo is a pullback in diagram (42).
Erercise: .Ea is a left adjoint to [/o (hint: all the ingleclients a,r'e on the
tab1e...).

If and object of Oy-Alg has the form f,s(A), then

(43) .Y(,6(f,o(A)), -{) o ot,-Als(f,"(A), o(x))
(44) ry Sets(A, UoO(X))

(45) ry .Sets(A, [/X)
('16)

Remarks: Isomorphism (a3) is natural in ,t, the line (aa) is because
Fs,flo ale adjoints. ancl (a5) is dr-re to the fact [/oQ : tI.

We can say: to the extencl we can at least find values for'tr(A). we
have at least a partial left adjoint. Now, how can r,ve extend this from

F
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the algebra tr(A) to all a,lgebras in Ou-Alg ? Obselr,ing that @u-AlB'
is a quotient by a clecent relation.

A e lOu-AlSl, -86(tis(,4) + -.'l u,hich at the level of objects is
surjective.

Fo(Lrq E ----- Fo(ts(A)) 

- 

e
O has left acljoint 6 if .t has coequalizersl.

lHistorical comment: Looking at the adjoints
rfo

Sets ;__- Ou-Alg
Uo

and
FoU: Sets---+Sets

one is puzzled by the question: Wh;, did Larvvere didn't discover rnonads? Perhaps
he l<new Eilenberg- .. was rvorliing ri,ith them, that..... Perhaps he plefeled to
concentrate in the categorl,' Oy-,4J9 leaving the surrounding work to other people



o
,X ;- OLr-Alg
t, d, rIltrl lr, rol lr.![

$p1. 
--- 

$p15

where lOi,] :Sets ancl for the 1]]aps we have many choices

I 
L rrar 1t'A . t-) ')

l', x(rtrr).tr(A))
06( r' o' : 

1 i *l,ll,Li'f)1 r,,
I

[5.U'(r(k))

LECTURE 14

Continuation of the proof (LO/23)

We have

all of which are the same: l and 4 are the same: (Lr")r: ([f;)". The
adjointness between fl and [/ gives the equivalence between 2 and 3.

For 1 ancl 5, observe that Uk is representable and repr-esented b5, fl(k)
(Yoneda Lemma). The eclualit5, of 3 and 6 is b1' definition of what
is L/". Finaily 3 and 4 follows from Yoneda Lernma (represented by
f,(k)). Tlris is the clescription of the categor,v Ory-Alg.

Non let us see the functor- O : ,I---+Oy-Alg,

o(x) : ([,rx, {(L,x)" :+ (ux)"}.ua)

where yr -!s Li" a,nc1 A is definecl as all posible....
The

algeblaic language nat. transf. language
{I*e : ,r(o)

F-or x 5 )', U(O , o(x)---+o(r) is a homomorphism because

€o(rxo') :((oa) xc-.,

79
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(This is the reason lvhy many algebraists, f ex. Jacobson, prefer to
write function in one side and operations on the other).

SouB NrorrvATIoN FoR THE LEFT ADJoTNT (i.

PRoposruoN 7. I. Euery fru'rctor that ts a left arljoirtt pre-
serues coeclu,alzzers (mu,ch more too . . . )

2. Euery functor thatis a right adjoint preserues kern,el-pairs (ptrod-
ucts, pullback-c, itt general limits we uill see it later , but this
is uhat we need nou,).

Observe

,\'{.F.,X) = Sets(n, U{)
: Sefs(n,, Up(O(X)))

Using left adjoint f,B

= Ou-Alg(F6(r,). o(x))

For what? Morphisms ,rt'(?, X) looks like last line above. If thele rvere
a left acljoint to O(X) rve would have

a X(O(tto(")),X)

So, for vaiu.es il(f,6(rz)) we use F@).

Pnoor'. (1) Take a pair of rnaps

, r' p-coe<1t.i..ry) rt,l/+lt,". lil

u

Applying the functol F, u,e get

F.t tr,,
F A' ---------- F.4 ' '' , P 4"

Fy

We want to check Fpis a coequalizer. Given t: F,4---+7 lr,ith Fr:
t o Fy, find matching i : A----+L\T. It is easy to check f,, : i,y. So,
by hl,pothesis rve have f factors! through A", that is. f lur rvith gp : i.
But then qo Fp:1.
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works essentially in the same way.

p'.

:

FE

u f , 11n,,

81

(2)

.t' r
l/- 1 J tll

-I+-l-l

TIA
i
.

i'.

:

E
aa

Ur
'----------iuA

u'..,,i
a..:.'

.:'

Given o. L, rvith /'./'

translate in

(47)

: U.f o b. the compositional reqr-rilr:ment

rp:?t y1.,:L

LIrf: a [lyp: b

So there is p with (a7). tr

Knorvn how,i needs to treat the flp(n)'s and knowing that it is a left
adjoint, ii will have to preserve coequalizels. We will know how to
define

r ii, (r; )
ti,(coec1(Fp(") --- Fa(,('))) : coeq(f,(") .+ F(,k))

Y ol'a)

So, why can ever)i O11-algebra be expressed in this u'ay? Take A e
Ou-Alg. I'bl each natural tlanslolmation L'-a -'-s 1i" we have

, - +wlt' 'lAl'

:t

tra(llr -^ ' l
id

ltl .lAl:t'(A)

Now,
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This function at the level of sets is "very surjective"

l+1 
qvt

lF,IAl)l
Ue(e a)

id1a1, or better U(idA)

This can be done no matter what algebra you are looking at. So take

(48) Fe|Eal) "" , EA@,Fr|Al) 'o , A

i
What is the coequalizer of a,b? It is ea. The diagramatic-style proof
is: Given test maps J with ta: tb,i.e. tres^: tye so

, --T
)'t ,

Fo(lEt l) + F,fi6 'o , A
h

Use heavily ....

DsFINItIoN 9. (if we can (!) .... coequalizerls had better eristsin
x)

<Ir(a) : coeqr(tir(z o €pa), 6(, o rr))
Recall 0 that every time you have an adjoint, you have a back

adjunction

ii10x; 0 . ,

lAl

(4e)

and also, a front adjunction

(50) A o , o(.irA)

The next trick is to see that the three ingredients in FIT make each
(49) and (50) an isomorphism.



Leftover from last

LECTURtr 15

(Lo /28)

time: if an acljoint pair is given. and

o
@u-Alg

Sets

is forned "as usual", with left acljoint Fs for Ue,

QoF>Fs
(Last clase we coulcln't see the ploof, that nas at
window . . . we just needed to nnravel the shade .

Recall the functol [,rB rvas defined b;,

O1,-Alg----+,Setsofr T-$' 5"1rs""'o 5 5"f,

We have to remembel hou, we constructed flB; First

(51) o(r(n)){k}: Ur(lr("))

(this is essentially how the passage from.{ to Setsoii'u,olks). On the
other ha,nd,

(52) Fe@,)(A) : Oy(A,rz)

NTow, Oy(A:,rz) had at least 5 different expressions, one is nat([i".UA),
and by Yoneda it is isomorphic to Ur{(tr(Ar)). So, b1, equations (51)
and (52), at the lel,elof objects, the functors O(F(n)){k} and F6(n)(k)
are the same.
Erercise: Check the map-level.

This help explaining wh5, $ at the level of free algebras is a perfect
inverse of O all the time. So rve could perhaps for.m

Q : {Au-A}g : X("Q(A)",-) o Oy-Alg(A, O(-))}
83

x
o

then

the other side of the

)
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i."., g are those Oy-algebras for which the functor

@u-Ajs(A, o(-)) : x---+Sets

is representable by an object rtSrr ir, .Y. We can say thai at least for
the elements of I we have ti is adjoint to O, and the supernaturality
lemma tells us that the extension

e: (gls,---+X

What we know at this point is that I contains ail the free Oy-algebras.
Now, since euery @u-AlS is a coequalizer of some pair of maps between
free algebras, Oy-Alg g g if .t has coequalizers (actua11y is enough
to have "enough coequalizers") and the reason is that (i must preserve
coequalizers.

Standing assumption for today from now on:

1. [/ has a left ad.joint F
2. X has coequalizers (this assumes i[ ir ""r"rywhere defined")
3. U(r) is epi * r is coequalizer
a. U@) is epi € r is coequalizer
5. lf has kernel pairs

Recall a general functor T : A---+B is faithful if each function

Ta,a, : A(A,A')---+B(TA,TA') is 1-1

Why we rise this? Because [/ is going to be faithful iff O is faithful,
and the proof is somehow given by the fact that Yoneda is faithful.

Clatu. U6 is always faithful (Why?: because of definition of algebras).
And so, O is faithful. + Ue o O is faithful * [/ is faithful.

Conversely,U is faithful, then O is faithful.

PRoor'. (of claim) Remembering that tJ(r) i,s a coequalizer (in &ts,
i.e. onto) ifl r itself is a coequalizer in X ,\et us show that U is faithful.
Take

and assume that Li a : Lrb in
Ua

tIX ______, t]Y
ub

and prove a : b. Consider

Lryx t' , x--1----l,
b

a
x -----------a Y

b
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So we have at the level of Sets

U Ft]X

Tux Uex

fla: LIb
[l X ------.-.- UX ______-- U\,.

rd

hence a o Ex - b o ey. But, U(ey) is "very" surjective! So ex is a
coequalizer. Hence e;g is an "epimorphism", meaning that a e rx :
boeyta-bisvalid. tr

In fact, calling a map e epi,morphism tf

Va,b: A= B (ao e:ba e+ a :b)

we proved a more general fact:

Lettnta 4. A functor LL that has a left adjoint and that sati,sfies
U(r) epi * r is epi, is faithful.

So, with (2) and (3) O is faithful. With the help of (1), (2) and (3)
together, O is provably full (as is tll).

Anyway, O acts "full" so far as maps between free things

x (F ln),F(k)) --o, ou-Ais(a F @),Of'-(k))
ll

(53) x(ors@), F(k))-:* ou-Ab@)Q-4, Fs(k))

l
x@r6@),.iFr(k)) - - ou-Ab1r)@), Fr(k))

o

trverything works except we don't know if iD is well defined. How can
this happen if not because O and .i u.r" bijections and inverse one of
the other?

85
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Let r-rs prove O is full: given X,Y e X and
5 t, in .t u,ith O(cr) : /.

ox -l* oY seek

Y
:

,,11,,,,1],,
1l Frr,f ll

Iarl

f"
X """""''Y

(\.

Lloex 
ue'f , ueeYtl::tt

Lix + LiY
Lro.f

(.54)

("sequential srvitch" diagram: taking rt (rz) with the left (r'ight) arrow
the diagram commutes). The goal is to figure out u,h)'

Fltro.f) or-1 : F(tls.f)o12
The handy thing to use now is hl,pothesis (5) 1. The diagonal dotted
arrorv: is enough to see that

[/(a) : tLrO(c') :t]a(f)
Erercise Prove ecluation (54) above.

The ias1, thing is to see is comparing

o,i,(A)
I

lo,

I
A

What does it take to see that this is an isomorphism?: next class.

oox
I

I

c"l
I

+

X

lAll this is ill rnotivated if vou clon't know about monads or triples.



In where the final
other interesting

Our setting now: stiil

LECTURtr 16

part of the proof is given, and
stories are introduced (10/30)

Au-Alg

.9ets

wher-e

OL, ":" (natural trans{brmations among {&ts}-inclexecl powers of Ll)",.('-,, ( ff-mor.phisms among {Sets}-indexed values of fl).
and.t nith coecl,ralizers, kelnel pairs. ti(p) onto iffp is a coequal-

izer, and ...
Adclitional neu, fil,pothesis for toda1,' rvi11 be ...sorre leference here!

\Aie alreacly saw F is full, faithfuii, has a left adjoint, and fle o @ : LI,

Oofl-Fe.
The on11,' thing lve need to see toda-v is that Qti is "close" to the

iclentity in Ou-Ali
So, let us assume (x). Given,'l e 106-], O(A) is a coequalizerin X,

namely tlre one u,e got b), noticing that in Ory-Alg:

r,t€E

I1

Fet,.,aE " , tr-; FoQIoA) 'o , A

xz€ E

and at the level of Sets:

Fr/

1/ r'

[-et t lJ ae ,
t-eE ------- t-7lr7t 0lA) ---- I et 1,,

LIs:r:2
B7

(5DJ

x
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The countelpart to this (applying tr) is

.- (:()e(J(56) FLraE 

- 
Fao@) -' o(A)

it2

i.e. r;e s ale values of O and lr,ith them get the q.
Nou'applv O to 1i6):

o(r,) orcoecr)(57) OttrI atr) .---QrF/-e(A)) ' 'lOO(.1)
o(ri)

Considering diagrarns (55) and (57) together we arrive to the following
situation:

rt. L- .
FeUeE rz€E Fe(tleA) 'A , A

(58) : 
a,, 

: 
i'o(r, ) o(coeo )

a(FLraE) 
=,___i 

a(FLre(A)) 'i oo(-4)
o(rr)

Using the trvo equalities u,e got a map aa : A--)OdjA. f{e11,, because

O is an adjoint, preserves kernel pairs. Hence O(coeq) is a coequalizer
... Norv the on15, thing left is:
Erercise: Prove that a,1 is isomorphism (this problem could be hald).

So, finall1, we arrived to the end of the stor\,:

6
I fully faithful "41g

o

fol ever5, X e Ory-Alg,

.\' 1, OO(.\ r Or-\-; : O(,i,(O(X);)

Introduction to Monads. One of the things rve could have focus
in is the iteratecl r'epetition of [.rF (in some sense tha,t is the foc.us of
Beck's theolem).

,\,

\\n
F\

\
o
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Recall the particular cases of the equation

A(A,UX).! X(FA,X)
rve studied in lecture 12. after definition 8. For: X : FA u,e get:

A \o , Li F,4<+ icrpl

and fol A: UX rve get

idr ,r <+ t't| 
^' 

t* 
' X

We could define trvo maps /2, r' as in the following diagram

x (F A, FLr X)

-4(;1. ItX) ..'. . :. : : : : :. : : ::,T(FA, X)

r/, o.uy
,/,

,/ lt.q.,t

\ 
l'A,x

-",1s\
A(L F A,Lr X)

We have the folloiving important observations:

LBnnll 5. l. For all J e A(A,tf X)

e s.o f (.1'l: h+x(l)
2. In th,e other rlire-ction, for all 9 e X(FA,X),

tf k) o \.+: r,.x(?)

Pnoon. Just a naturality check, r'iltua11y a fragment of the proof
of the Yoneda Lemma. Simple Exelcise. !

In the \ oneda Lemma, fot' an1' contr-avariant functor T : Aop ---+&ts,
and fol anSr object -t e A,

TA" nat("A(-, A),7)

The question could arise, given ) e nat("4(-, A),7) and con-"idel its
image )-A(idA) e TA under the bijection. \\rhen cloes an element of
7A guarantee that 7' is lepresentable hy A(-, A)'l

DprlNrrroN 10. In the situation above, a € TA is ca11ed urzz,-

uersal element if, under \bneda Lemma, a : )A(ic1.a) fol some ) :

N

A(-, A) --+ T .
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What does it mean mole exactlv?: A universal element is a kind of
"generic r.aliab1e".

PRoposruoN 8. a e TA is un'iuersal iJf VX e lA|Vz € 7X.l!(
solution to tlte equation

(5e) T(()(a) : r (( e "4(x, A);

Pnoop. Suppose a is universal. use the isoilorphisrn )-y : ,4(X, A) -=*
TX. So given r € TX, ne hat,e 7()it("))(r) : r, hence consider'
r 

- 
\-1r-rq - ^\' \'t /.

In the other direction, if there is aiwa5rs a unique solution of equa-
tions of the sort (59), u,ant to shorv that ) , A(-,,1)---+T is an equiv-
a,lence. What ) does: )(O : f (6)(r) The uniqueness of the solution
to (59) is telling you that )-r :"rl(X, A)---+TX is 1-1 and onto. tr

This is at the bottom of the statements of Lemma, 5. It is just exp-
resed in a more intrincated way. {s a r-esult of this extr-a complication,
we get something. \\ie can think of all 4 togethel as a, map

icta ---!- g P'

The same with e:

id* *--!- PY

If we applv U to the above diagram

t' , u(e) t- Ft-

and consider now on11,- the images of elements of -P,

51 i'(;r'-rt L tL l''

rve get the follou,ing pictule:

\'1A ---:!- I F ( 
: U'o ( Ft'F

Now, if you rvrite l'[ : (l F it is obtained

idA--J-M, l' MoX,I

It is beginning to look like the first lecture again . . . You have a "unit"
17, and a "composition" pz. The miracle is, because of simple things
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arisen from 6, this operations satisfies the laws of associa,tivit), and
unity (like monoids, reca11 the examples of the introcluctorr, lectule).

,{/ 
//\/(-) 

A/ o .l I l'.'t, 
,11 o .\ t o .\t

l..llt\|IM(t1)l \( ttl a,soc ln1(lr)l\\t II \t I

l,loXil + lv-[-l'lol'l
lL I.L

This is very much like functors frorn A to A ancl composition o.

lrtrext time: the reason \vhy 17 and pl satisfy the conditions.



LECTURE 17

Monads (LL 14)

For what follows, compare Maclane, CWM, pp. 78 tr. Consider the
diagram

x

,l l,I
A

N (F A, FLr X)
,/\o"/ \"-

/ l4Y \
A(A.L|X). ... .=...'..' .''. N1FA,X)

\ t';Y /\./\ 
,/, n,,-oil1 \ /

A(ti F.4.U x)

Pux,x(idvx) :a"1 ex : FUX---+X

and

(60)

(61 )

{a,rilrdra) :0"_t qa : A---+U F A

I want to do toclay Plovably the first thing to notice is that:

TunonBl,t .1. Itith g,1.tsi, nrLttLrally bijections (natural in A ancl X
a-s shown), the maps t'la tlnd €x (1:t-e thernselues rtaturcrl in A (or in X)
and satis.fy:

(62)

(63)

P.{,x : €a o Fa,UX( )

('A,x:flp\x( )ory,

Consequerttly, it folLows that

(64) V( : f,A---+X, -!r : A---+LIX uith, €: e-x o I(r)
(65) Vr A---,[iX, ]l{ : F.|---+X uith r: rta o Lr(€)

(66) 
e3
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Conversely , G'iuen, either natural transformations e y sati,sfying (61 or
r1a sati,sfying (65), the resulting proposed definitions of g as e o e(-)
(or of tl, as tl(-) o r7) creates as sort of bijection, natural in A and X
that is eractly meant by the adjoi,ntness between F and U .

Once you notice the front and back adjunctions e16 and na (that
are really the universal elements Yoneda gives you), (64) and (65) are
just the statements about this universality. (Again: we are stating a
special case of Yoneda Lemma).

Pnoop. Let us verify (62). In order to find that two functors are
equal, we just have to evaluate them: Let r e A(A,uX)be given, and

?d,x(r) e X(FA,X).

F' .4 F(*), 
FU X '* , x

We need to exploit somehow the naturality of cp: For given arrows

At -:+ A and X J+ X'it says that thefollowing diagram commute:
ru

1 va'x

U(0)o-oall_ l," 
- o F(o)

A(A' ,Lr X') 

- 

x (F A' , X')
?A,,X,

Hence for r we have the equality

er(tl(p) o r o a) : p o e@) o F(a)

We want to compare

9rA,x(r) : ?ux,x(idux or) : gux,x(id;ra) o F(r)
See that we are using a tiny part of the naturality that is easy to
overlook.

The other part (63) is proved similarly.
Now, the "Conversely". Is just the process of going from, given an

element in the ( ) slot in the left hand side of equation (62) and find
and element (in the right hand side slot ( )) as the unique solution to
(62), or viceversa.

In some sense this theorem is nothing more than a summing up of
all we already knew about adjoints. n

From the above discussion, for the diagram

idz 

- 

FU ---------------------*idx
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(67) Fti
ir1, ___!- 11p

we get maps

(68)

+ idx

and applying the filst line to objects of type f,(-) and applying f, to
the second line we get

Fln.' )F.4 "",FLrL'"^,F.4

This is an instance of ecluation (62):

Thele is also another way of combining tha maps in (67), ancl is
applying [/ to the first 1ine, ancl to objects of the form t/(-) in the
second line:

,.r. l'(,lu r ), t rLlx U(t*), 
U^.

Here we have an instance of eclLration (63):

I/(e;;) a \ux : {,,(e-x) : idrrx

The tivo unit laws yield (applying fl to the top one, ancl evaluating the
bottom one at A: [/X):

FII FII X

e(,tu*1,/ \rui,
/\

trt .Y idrur , F{ .Y

\/r(q, t, \ ,/ ,r, r

Fti F(I X
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These equations aredn the category N.Instead we could have applied
U to the bottom, and evaluating the upper diagram at X: FA:

UFUFA

,\uF/

(6e) U F.4

4,,,
FAt-I FU

Observe that in this diagla,m is never an [/ rvithout ancl f, (Ltf,). So

write T : Li F, keep r7 : 17 and the only place where [i appears above
without F writel LL.s: LI(e r,+). So we have in /:

pr, : ida ---+T Frt:ToT---+T
The same token in the other diagram: -P[/ appears everywhere rnith
one exception. So write G: FU, keep e :6, and write2 5: F(\ux).
Hence r,ve have in ,11:

GoG. d G € ,idx

So we har.e a, notion of abstract rnonoicl:

lThe p for multiplication.
26 for diagonal, or co-multiplication.

TT(70)

T oT

/\ryr,/ v
/\'/ ic.l

\/l(,7) 
\ /

T oT
The commutativitl'of this diagram follorvs from the commutatii,ity of
the corresponding diagram (69).

tr F(t1a)
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Similarly, using the commutativity of diagram (68) follows the com-
mutativity of:

GoG

,/ \.
/id\

G

/,7

GGo
Now, what about the associativity law I predicted?

(71 )

T(u,\ToToT "'.ToT

,,1 l,tt
ToT-T

11

What does it make this work? It is got to be naturalityl Let's unravel
the diagram (71), by putting again the old meaning of T : UF and

Lr: U(ern):

r.IF ouF ou, LIF('r). 
uF ouFll

tr G ,u ill l, e,t

u r! r r_ ,,1"
tl (, r)

Now, notice that everything is [/ of something, so consider the diagram

FU FLT F F(,,), 
FLT FtlIIeFUFI 

1."++
FL|F 

- 

F
€p
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and now notice that evervting here is acting on objects of the ty.pe
tr(-) So rve get fina11r, the cliaglam:

FU Ft o(') , ,r,
I

eFt- :
Lt+

trLi ---------..-.--* id

which commr-rtes because e is a natural transformation. Hence all the
chain aborre commute because fl ancl [,I are functors.

The analogous diagram for G
Cf rt)

GoGo(i,'-' GoG11tt,rcl lilr
G oG -------=-l

d

commutes fol essentially the same reasons.
So the fir-st obscule lecture non, include the context of categories of

functors form "ut to 
"4. 

u,ith compositon o as the composition of functors:

A,IoXrt l' .M, ''l 
ida

whele p, is the "mriltiplication" and 17 is the "unit-selection".
What N4aclane r,vould call a rnonad in "4 (: monoid for o on AA ts

(as Barr pointed or,rt) a triple (T,r7,p) rvith T e AA, 17:id7 ---+7 and

Sr:T oT---+T such that diagrarns (70) and (71)commutes.
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T-algebras

DBpIxrrtoN 11. Given a rnonad/triple/"standard construction"
(7,\,F) : 1l on a categorv ,4, b,r' a T-algt:bra is meant a constella-
tion (A, o) rvith A e lA1, ancl a : TA---+A for which the fbllou,ing two
diagrams commute:

TA

2-t \
AA

ic1,1

TTA T ,TAtl
Tol l,1t
TA- A

a

Exauplps. (1) Let A - TB, and let

(cr : 7A---+ A'1 : 1tB : TT ts---+T B

Then (T B, frp) is a T'-algebla:

TTB,\
TrB--'t --<{,

-'t \TB+TB
idre

99
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was jsut the half of the unit_law pairs, and

TTT B I!!* TT B

,rrl
TTB -1'; ra

(2) other class of examples: Given any adjoint pair of functors

U
a-' -- ,- .a

with form and back adjunctions

17 : ida---+UF e : F[J__+id,x

such that , : Ur,,? - rt,t/Gp): p (in 1l: (2, rt,p)).In this caseUX,U(ey)) is a ll-algebra for ali X e lYl.- 
\- 1't) rl

PRoor,. In fact, LlX € lAl,, Lr@y) so U(e;6) : T(LrX)___s1ry,

U (Ftlx €x . x) .\+ 7FUX U(ex),,X

Hence, (A, o) : (LI x,rl@x)) has the right structure to be a candidate.Now

uFux

idrrx

by adjuntion laws. Now, why the following diagram commutes?

TTUY TUe x, Tyx

,r-l

t,

1,,",

n
Because T : FLI.

rux TGil* ux
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Remark: this is a broacler class of examples than that of exarnple (1),
and mole important: algebras of type (2) are part of a completely
naturai constru.ctiorr :

o
T-Aalg

(72)

A
To endorv '1f-algebras u,ith category stlucture, define "homomorphism"
form (A.o) to (B.p) to mean: an1,. -morphism .f : A---+B such that
7.f makes the follor,ving diaglam commute:

't1 {ttT-4 , TB

B

Also, free of chalge, rve get the preselrration of the rinit:

,f , r,

1,"
B

\

I

.{l

l

^ ---7-

TA

1

,tol

I

A

Exanpr-ps.

1. idA will be homomolphism from (,{, a) to itself.

2. If (A,") -! (8.3)and (8, {J) 4 (.C',-t)tlrengo/: (,4.rr)---+(C,t)
The fact that this cornposition is a homomorphism follows from
the commutativit), of the squares in the diagram

TA_TB +TC
t rf t Ts 

Itlol tt 
Itl'o [ ,b n ,i
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arrd the fact that T(g o .f) : TS T f .

So, lfu is a functor! The only thing left is to check that O is a functor.
We already dnow horv O is clefined on objects. Let { : X---+Y. For
Ltr(O(€)) : U(€) (to cornmute) it means O : O(X)---+o()'). that is

ti(€)' (LrX. ex )---+([.r).', ey)

\\re jusst leed to check that Lr(O is '1f-algebr.a homomorphism.

Trx TLI(€), Try
I

U'.r t ;r
rl

,*r-,-\
r-(()

Writing T:UF this diagramis tr-[ ]and [ ]does commute! Soreally
Q becomes a functor'.

Now I like to convince you that Uy invariably has an adjoint functor
(@fl will serve...). To see a left adjoint to [/r : Ar---+A define

Fr : A---+Ar f,n(A) : (TA,F4

It is r,vell defined at least at the level of objects, because ne checked
that this objects are algebra,s. Now.

A eo(A) : (f A, r,^)
Itlr_rlsl tr'(g)l lrutttlfrt
B tro(A) : (T B, t,a)

Why 7(g) is a T-algebra homomolphism? Let us see:

rr: TT!,118

lllll,,1 lr, 
,IIrA--r;rB

Does ,Fr(g) become a functor? The identit), is easy. What about
Fr(s o .f)?
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Finally, why s[o,ri6 Fr (as defined) be a left adjoint to [/r : Ar ---+A'l
We could

(/r/
V

A(,4,t,iy(B, r)) .{ ar1rr1.+; , (8, O))

r,

To prove this, it is easiel (because of the context) to exhibit the front
and back acljoints. i.e. rnaps r7T and er such that

n^.-

'l^, [/rrr,-l : f A (T B, pe): r'r(B) : FrLrr (8, p) :gll @ O)

let r7l - r/1 and tb,Bl : i1 The natulality of ryX is r.easonabie clear.
What is not immediateiy clear is that lre are If-algebla iromomor-
phisms.

TTB

Fs

TB

, ,0 ,,,
I

la

I

p-B
Does this commute? This is a particular part of "(8, B) is a Il-algebra",
exactly expressing B is a lf-algebra homomorphism.

Now we know the front and back adjunctions (using the fact that
almost everything begin with 17 and p it is better to use the two equa-
tions below than to go through hom-sets).

(74 )
nlf

id.r I U'F'

UTf,TUT i-TUTTTx
uT FT tu , id,

The right-hand diagram commute because cy o qA : id is one of the
algebra laws. To check the commutativity of the left-hand side diagram,
it is enough to apply U F to the whole diagram; we get at the level of

F FT
id
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objects rvhich clearh' commutes:

id.,r

So the front and back adjoint laws are checked!
Nor,v in (73): To each "4.-morphism .f : A---+B (given '1f-albegra

(8, P)) exists a unique ,4.r-morphism

tto( t.) : (f .l .t,a) orlou lB.J)
such that i o,t^: /. How do you find f? Incleed f l. th" inrage of /
r:nder- the passage

A(A,tir(B, ,,r)) & Ar 1Fr A, FrLrr (8, OD 
e e'p) o -, A(Fr,4. (8, 0))

in words, .f : e (e,ho F'r(l) (this seems completely rnisterious if not in
conjunction with diagram (74) rvhere it comes naturally).

The last thing: nere (7, \,1,1) : (tJF.q,t/ep) for adjoint paiL 0
then as FT one could use

O o F : A---+X-+Ar

TT
-'-1rt v-/

AT
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Proof of Beck's Theorem ( LL /LL)

Let T': (7,?l,p) a monad, and consider again the diagram

x Q ,xJ

( 75) \ F,/F\ v/'.
A

When comparing O o f(') and Fr(')
1. Have there the same [/r (each other)?
2. If so, are the o's the same?

Well,given Ae lAl,
a F (A) : (UlI(OF', A), U (e pa))

: (LI F A,Uepa)
: (T A, pa)

: Fr(A)

(Is just O commute both with t/ and f,r)
Why F is full and faithful on free things?

A(A,U X)
Summary: Q commutes with the [/'s and with tire -F's, and each

oro,x : X (F A, X)--+Ar (Fr A, oX)
is a bijection. Were Q to have a left adjoint (see diagram ), ii would
have to preserve coequalizers. Now, in AT, for every object A :

X(FA,X) , r. ,,lr r,,^,'A(Fr,OX)--'' '-'.--' 
locall.y lull & taithful

\ ,,/
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(lAl,o), the algebra A is actually coequalizer:

Fo(*)-

(76)

qvl \r1n1

And we know Tlal ar.d r7rro,

ar71,11 : id (alg. requirement)

t11a1\r1d1 : id (triple requirement)

1-t1e[(a) : id

The diagonal
by

a
lAl .------- 70Al)

lttl
rytl tl lrtrtalrllr
rlAl. _ rrlAlI T(")

Also 7(r71a1) works as a "reflexive" map

T(a) : T(rtd) : T(a o rlA) :T(idtat) : idrtat

So by an old proposition (see prop. ??) about lifting coequalizers,
the algebra A is even is a coequalizer of a [/r-split, Ur-reflexive pair.

In effect, from coequalizers in Ar which are [/r-split
fi1

E *i= B;-1- A
--;= 0

we go to Ur-split pairs in ,4r
fr1

o-Ea
I2

4o no(ltro(lAl)l) .l\'t{- eo(1.41) 'o ' A
t--_
| 6Frr-Ar)

url ..
I
I, T(") 

,A rr|Al):- - A;,70A1) ' 'lAl
r(nro)
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where g : Fr(?) Tq B - Fr(??). 1\ow,.using o-r (,,replace .pr by.F and use fulness of O,,) *" g"i t/_split pairs in #

I1

F(?) 
--F(??)t2

Pinally, if u-split pairs of #-morphisms rrave coequarizers in ,t the

[?i'" 
algebra (lAl'*): A giu"..ir" to a "resolurion,' (see criagram

F@TMD) gTS 
FIAD O , QF(r)

Let d,(1,41, o): g.Now is reary a matterof checking that this rearydoes the right job as adjoint: L"t ,, e X@1Al,o),X),and take atest map / and consider th" diug.u_,

FUF|A])++FLA\) P ,Qtr(") \ i,\l'
X

u FU F|,41) *+ ruil4l ) P . |Al,*)rr(") \ ,i\l
o(x)

It is not difficult to see that , are in 1-1 correspondence with the /.Hence for each o we get a 0 and viceversa.

,rrJnrr 
works if U-splits pui* hur" coequalizers in /. Why is this

d " kTffi .6' 
rf u : x ---+Areflects coequalizers of Lr-split pa,irs, then

PRoop.

FuFux #5 F(ioxl) P .,i,oxF(uey) 
\ 

_l=

ex \{-
X

n
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For O o j : idar oilc' needs. additionally, for [, to pleselve coequalizers
of [i-split pairs. So we ha,r,e a cornparison

( lAl, a)---+o(6( lAl, a))

6 pr"r"..'"s coequalizers. (D has no good reason to preserve it. but it
has to preser\re those it is forced to. See the diagram

.-+,+

coeq

and recall that UrO : [/ and [/r reflects coequalizers of [/r-split pairs.
So, O preserves coequalizers of [/-split pairs if U does. But, the

kind of coequalize, ti1;a;, a) constructed had precisely this property.

U
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Tliples v/s Theories (LL /L3)

We have the following list of themes to develop:

1. Triples v/s Theories
2. Structure v f s Semantics
3. Rank (when A: Sets)
4. Birkhoff's Theorem
5. counterexamples

Let us start by the first.
Algebras as I described them at the beginning in terms of sets with

operations on one hand, and algebras over a triple on the other seems

to have any connection. Here it is:
Fix a category .4. Define a "theort'' over A to be

1. a functo, A i+ O, where lOl : l"4l and 0(A): A, and

2. another functor O -5 ,4, right adjoint to I (with fixed choice of
front and back adjunctions).

By a category of d-algebras mean the pullbackir'Cat:

@'Alg - - -'Sefso"o:I
i l-"d,l
It
I ---l- S-t-r ''

(The same as befole, but insteacl of &ts rve have an arbitrar-v category

"4). The expanded clefinition of - o d follows from

0a
AoP-OoP-Sefs

Also, recatl that an element of .Sefso"' is a pair (A, a), where a :

Oop---+Sefs, and a(n) : a(0(n)) : A(n,A). (A(",A) "sme11s" like
A" -which is the case in Sets, or in other words, "is what "4 thinks is
an n-tuple in A'' )

109

(77)

(78 )
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Hence w'e harre the diagram:

in O (in Set.s)

t7 a(ri) : A(n, A) ,4'''

1 ,, In a(o) la(o) Ia(o)rYiY
,k a(A') : A(k, A) 4k

For / : t7---+A is leally wolth rewriting it

{r(")}(/) : f *a: k-+A

This couies from

fo^

d.a p

And with this it is easy to get the following equations:

Preserve composition means:

(f*r)xp--f*(aoB)

Preserve identity means:

./xrcl7,:.1

Finallv. lot ,r 6 A(1.'.,,;. fi'ont 1i> r.

.l +0r,1'- J'oo

Notice that the folrnalism is exact]l, the sarne as in the case of Sefs.
In (i7) we can name [/B and we can constluct a functor' flp :

A---+O-ALS. Horv? using-the monad that is lr,ing behind the clia-

gram. Look back to d ancl d in (1), (2) of the definition of theory: we
harre a,lready a monad on .4. So lvrite

T:(T,,l,O rvhere T:Ao0
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and where 17 and pt "are"
Consider the diagram

TRTPLES V/S TITEORTES (11113) 111

the front and back adjunctions for (d, d).

.4 + O(-, 0(A))

O-Alg 

-

F 1-",
A ---,= 5"ls#

and check that

o(d(-), d(A)) : A(-,4e611 : A(-,rA)
Hence, the diagram above (because @-Alg is a pullback gir.es an arrow
F0) So lve have a functor FB running upr,r,ards in (77) \\re can prove
(in the same way as we did in the case of Sets) that fla is an adjoint
to LIs (the generalization is verl, straightforward).

Now, fix a monad T: (.T,rl,lr). On the one hand, there is Ar, u
'1f-algebra. On the other. there is the Or with

It atA'.Trt)
Or(A".r) : { 2. Ar(Frk, Frn)

IS. nat(([-r)'. (t-lf)t)

where

Ur : Ar---+A (LIo)" : A(n,U'(-)) ;.Ar---+Set.s

It is easy to see that these tluee things are interchangeable lsee the
same proof for the case of Sets in lecture 14).

Consider the functor.

0 : A---+@r

defined on objects as d(A) : A, and on arrows as

0(k-\n:_ o.f:(i\r
Now, what can \\re use for 0? D"firr" simply

0 : @y---+A
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acting on objects 
"" 

61,+1 : T A and on morphism as the corresponding
underlying morphism.

The monad arising from this adjoint is the same as the original.

WHy ALGEBRAS FRoM THE porNT oF vrEw oF MoNADS?. Why,
given '1f , should ,4r and @r-AlS the same? Because

Fi,rst poi,nt of ui,ew. Each has an underlying functor

U

_A
with left adjoint F and "composition-triple" just 1l again. trach fulfills
the hypothesis of Beck's Theorem, and each looks like "4r.
Second point of uiew. (Or how this things connect explicitly).

Let's look at

AT

A,a),+ Ao(-,(A,o))

An element (A, a) e Ar (upper-left corner) "going through" the upper-
right corner gives the path:

(A, o),* .41I(-, (A, 
")) ^, " 

r(.ar( -), (A, *))

and "going through" the left-lower corner:

(A, r) ^, Ur(A,o) * A(-,Ur1,+,aS;

Now, because FT and [/T are adjoints, the final results are 3 (moreover,
are equal choosing the right ...).

So (because @y-Alg is a pullback) we have a map ,4r---+@r-AlS.
What does it do? Let k -!+ n in 01 and n J, Ain ,4,. Notice that c*.r

gr

(\
@y-Alg 

-I

I\ lu",
\t
A-

Y

3"fr""o

I

lFrt

I

SetsAo



LECTURE 20. TRTPLES V/S THEORTES (11/13)

also k -'s 7,r. Hence define / * u-, (in /) by
'rf

lrt ,T-4

113

k y.r- A

So, we get a map
(.4, o) '+ (4, a)

5s11,, how do rve get flom Or-Alg----s/r7
Fix (A, a) e Op"41g and define

(A, u) .) (A, t/(e tn,"l)
Norv check that this is really in "4,r (a satisfl, the conditions of T'-
algebras ).

(Complete this partl)
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Structure v/s Semantics I: The semantics functor.
(1 1/18)

Think of this rvords more as a slogan than technical rvords. The r'/s
here -r-rnlike in the case of tliples r,/s theories is refering to an adjoint
pair of contravariant functors.

adj. cat. orrer,4 Monads ("4)

it, Strucr ure

(7e) A

x.r
+r

trol l/.'.- ----T:(T.q.tL)
t; Sernantics

So, 1et's back up a little bit. What does it mean a pail of contlavariant
functols'i Consicler the follorving familiar example:

o
KT 

- 

Real top. vect. spaces

.Y + C(.{ )

rvhere KT is the category of compact hausdor'ff spaces ancl C is (r(X)
is the set of continuous leal-r'a1uecl function on X. We have

C' (X) :'ToPlX,R) :,(7op
What could come bacli plar-ing the role of an adjoint? Let's see:

f , L---+ Cont (X, R )

can be thought as

f : L x X---+R

such that each./(/,:) is continuous in -, and each.f(-,r) is linear in

-. Hence.

Cont(X, m') = Cont(X, Lin(I, R ))
115
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So we have a liind of dualit,r, betu,een

(2, Cont(-{, R)) and (X, Lin(I, R))

(tlrink of Cont(X. R ) as F(L), ancl of Lin(tr, R.) as f-r(X))
So we have a pair of contravariant functors D and A1

Ar:-il-

Aop

are mut'ually adjoint on the right tf

B(8, D'p(A)) =r,, rt(A, A(B)) =r,, A'e(L"e(B),.4)

A,, is left adjoint, to Dop (a1so D,, is left adjoint to A'7').
This is u,hat is going to happen in diagram (79).

structure v/s setnantics. Fix "4 an consider elernents of ,rt as cat-
egories .t equiped r,vith a "A-functor [/ that comes rvith a left adjoint
and maps X

Call it arljointed categories ouer A. The name Stru,cture is for' (monadic)
strLrctules, the on1_v- important categorical aspect of the acljoint pair

L,T, *A
F

Why the other i-" callecl Sentarfticsl It has remained a mistery for me fol
more than 30 1,eals ... (It has logical connotations) as the "concrete"
object that is a "r'ea,1ization" of a theorl, and has this sense in Lar,vvele).

Is there a obvior-rs rvay to make \'Ionad(" ) a categor.y? As maps
from one tlipie T : (7, q,11,) to another T' : (T',\',F') (both in the
same category "rl) use any natural tlansfolmation ) : T ---+T' for rvhich

DA;- B
A

x x ,x,lt1l
Fl b F'l lu'I tl
A:A

lObviousl),the d's are fol c1ual, the na,tura.l examples of this l<incl of functols.



icla

) converts the unit fbr' 7 into the unit for 7'. For the composition,

T oT ]j] T,oT,tltlt,l lr,'tltt
, ----^-,

where ) o ) is the common value of the outside legs of the following
diagram (which commutes because ) is a natural transformation):

T'oT

LECTURE 21. STRUCTURE V/S SEMANTICS I TL7

(Reca1l the analogy with the category AA, composition o and identity
ida):

\/
,/\ 

./,,'

ToT

This is exactly the same thing that happened for monoids and sets in
your first steps in algebra: given a function h: M--+M', Bet a map
flom ,4r1 x lrI---+A,[' x X,[':

hxhMxM- ilil'xl,['

oT'

At[' o lr[
tt , irltt-/ \,,1 tt, < l,

--t h^h \
-11 xM ---M'tM'

,.)\ *6r{,0*,M-M,
h

Ererci,s e (extremely straightforward) With
and maps, Monad("4) becomes a category.

this definitions of objects
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Now, how are Structure and Semantics functors? We are going to
see that they are adjoints. Consider the diagram

aa

Let us take tlvo monacls and a transformation as in

.-\
1l : (f. tt. t-t) -\ T' : (I'. ry' . t,')

For each A, given rl'we get a: c,,t'o ),1 (see the cliagram below):

T,A
),1

TA

(80 )

A

This gives you an idea of how the contravariant functor is behaving.
If (A,o') really is a lllalgebra, (why) is (A, a' o \n) a Il-algebra? We
need to see whether (and why) the following diagram commutes:

TA

l)
(81) T,A

We can see that the upper right triangle commutes because ..., the
upper left by definition of a, and the one in the bottom because 'lf is
an algebra. Similarly, using the hypothesis about the maps that appear

tlA

q', (-v

ida
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it, you can check the commutativity of the following square:

Ta
TTA

T,A

/
(t' /

/^^

o'\
--.--- \CI,

119

ln

TA

\* \ T(T'A\^
)o)\ ',

\ l)',,
\i

l-t.s T,T, A +
I l1',t

lPo't

T,A

TA
(}

Replacing iegs by equivalent legs you reach
complete the proof'that taking a (4, cr),

the desired goal. This

AT' -oA AT

\/,o'\ ,/r'
A

Now it is just a mattel of checking whether the algebra homorror-
phism condition pelsists: if (A, or') and (8, 0) ale trvo '1f Lalgebras and

f : A---+B is a T'-homomorphism from (A, a'o )) to (8, 0' o )B).

Exautprtr. Let fr be a ring, l,[ an.B-module. Consider

We have

R & l,I ---+ l,l. R-+ R

RAr'1.1 --------*ptgl,[

M
analogous, and er,'enThis is completely the the proof is analogous.
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Writing the equations of this rvil1 give a completely uninteligible
proof, but a diagram shor,r,s it immediately:

TA Tf ,'I'g

/

\

The upper square commutes because ) is a natural transformation, and
the bottom one because / is a 7'homomorphism. The triangles on the
sides commute because of diagram (80) above.

This does the story of the semantic functor. I\ow, why structure is
a functor? lrlext lecture.

tr', T'f , T'B
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Stucture vf s Semantics II: The structure functor
(LL /2a)

In last lecture we saw how Structure behaved on objects. lttrow I want
to show that it behaves as functor on 'maps' as well. Let us consider
the diagram

A

We have U'o X: [I. Also u,e have two triples on A: T': (Uf,, q,[,i,r)
and T" : ([i'F',,\',[J,r,) corningfrom the adjoints pair f,t/ and F',[J'
lespectively.

Claim: the ecpration f.," o X : t/ will drive us into recognizing a
u,ay of going from 'lf to 'lf'.

First. rve...to go from U'F'A---+[]FA.

)a :1',F, I 1"(F'"1-'\'rF l)) 
{-,(-\(F-{,1;: Lr FA

In X' rve have

,t' (.F' _1. X(? )) =_ A(A, U',(X(?))) ? e l,Y I

: A(A,t/(?))
: X(FA,?)

Now, when ? : F,4 we can ask: what lands on the identity of FA?
Let A1 be the pl'ecursol of id-q and 1et )-4 : U'(41). Non', id,r is

natural in A, hence ) is natural.

ExnRcrsB. Prove the r7 identities. Hint: follow from the {act that
A,1 : tr'(A)---+X(flA) r,vas an J'-morphism

127

x'x X
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The compatibiiity comes fi'om a different source: In the equations
a,bove, both front adjunctions ale build in the process

Lt' A.a o \t : \t a q'a : ]lt)

In particular

Is there a natural way fe n,a11i tire path . . . ? Yes. One way to interpret
equations above in the case ? - F'( ) (also we are rvliting f instead
of FT'ancl ,F for flT):

Or,(A, B) = Ar'(P'A, F'B)

=- AT'(F,A,X(FB))

= Al.A.Lt'X1F 811

= A(A. u (r B))

=,4r(rA.rB)
ry O1(A, B)

\&-e can go flom the "free" objects ir Ar to AT thlough this path:

4r' 1F' A,x(?)) = A(A,,u' x(?))

= A(A,ti(?))

= AT(FA, ?)

= Ar(X@'A), ?)

But we saw this situation before. How can we extend this proposition
to all of Ar? Just the same as before (recall that Ar has the equalizers
we need for that construction).

AT X ,AT,t1
O'r'""""'Op

le1
A:A
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Remember, from the perspective of theories, algebras were a pull-
bach:

A-Alg + 5etso"'

|,*,
A --- ,- s'elsl''

On the other hand:

t-Lx
U

declaring

Ou(A,B) : nat(Uu ,Li^) : nat(A(B, U(-)) , A(A,U(-))

The claim is someholv that the passage fi'om such a scheme Theot5,lA
to aCatfA .

If rve look at nat(t/8, UA) it becomes direct to recognize that

Op,(A, B): nat(I/' ,U^) : nat(A(B, U'(x(-))), A(A,ti'(x(-))))
/0,/

/

A

\
d'\

\
O,r,(.4. B) : nat(([.I')'. (t")'') : nat(A(8, ti'(-)), A(A,Lf'eD)

This is holr, stmcture from the theories perspective is even easier than
the monad perspectir,'e.

Semantics from the .....perspective is easier, because ....
Checking the adjointness (rve haven't done it for mona,d perspectir.e

yet)

Th ( O, Str(.11' ---+ -4) )

Cat I A(,Y'---+A, O-Alg---+A)



124 LECTURE 22. STUCTURES V/S SEMANTICS II

x'

The arrow from X'to ,4. is already given. The one from X'to Sefso"'
is got as follows:

X'---+Setso"o

X' x @oP ---+Sets

@oP ---+Setsx'

@---+(Setsx')"n

Now, the last line factors

O ---+Oy, --+ (S"ttx' 1'o

where the first arrow comes from the condition of the pullback in (??).
From that perspective structure and semantics:
inverse element -q monad leve1

composition of functors -q theories level.

@-Alg + 3"tr""'

A-.
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Birkhoff's Theorem (1L /25)

See Manes, pp. ....
In this lecture we are going to talk about Birkhoff's Theorem (also

called HSP theorem) and how it fits in our framework.
In its original form it said:

TuBonput 5 (Birkhoff). Il (L,n) i,s a finitary (that is, each set
n(w) is fi,ni,te for all w e L) "signature" and V C L-Alg 'is a "class of
algebras", thenV i,s closed under the formati,on of products, subalgebras
and homomorphi,c i,mages i,f and only i,f V : (A,, e)-Alg for some system
of equations € on L-41g.

The next stage is due to Slomiriski: Same "then", different "if":
signature not necessarily finitary, but just "bounded" (lN : Vc.., €
L,n(w) < N). Both, Birkhoff's and Slomiriski's theorem are formu-
lated so: in terms of some preexisting operations, what does it take to
be ....

Lawvere's and Beck's theorems are different in that they don't focus
in a certain category of algebras, but in an arbitrary category "4 with
afunctor U:A---+Sets.

How do they fit in our general setting? In the process of going from
the closure properties to the definition of an equational c1ass, one needs
and adjoint functor )/ <- A. Once one translate free algebras to free
algebras in V you are ready.

Back to the pages of Manes.

DBrtNtrroN 12. Given a monad n in a category A, a srbcategory

VlAT
is called an "abstract Birkhoff category" if
(B1) For ali Fr(A) there is F(A) € l)/l such that

(82) v(F(A),v) = Ar@o(a), 
'(v))

is natural in V. 
L2s
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(B2) FoL all V € lyl. for all (,4,.) e Ar, fol all f : i(V)---+(A,o)
rvith t/r(/) split epi, then

(A,') : z(? e lVl) i'e' "(A,') € lYl"
(B3) y is meant to be /u// subcategory o{ Ar.

(B2) tr.ies to "translate" the homomolphic images in the best r,vay it
can be explessecl here, close uncler the formation of cluotients. tir (f).split
epzi nreans that there exists g € A(A,UTV) r,vith IJr og: id-+.

First thing to observe:

(Ba) the functor i:V---+Ar has a full-fledged left adjoint and

(B5) y has coeclualizers (same as in "4r) ofr U-sp1it pairs (Li :r",
t/r o i).

The reason for this: il1,clL had (82), you get a left adjoint in the
follorving wa1,:

v(F(A),v) = Ar(Fo(t),;(r)) = A{A,a V))
Nor,v if 1,-ou know whele to send the free algebra in a way that is con-
sistent n,ith

i
K' 

^-AT1,

tr(;(f,r(A)), 1{) = "a,r 
gr 1t1, t x1

In such a situa,tion you can extend to arbitrary algebras if I has enough
coequalizers

trrtrri.-l) {q tr'(,q)'0 .(.l.or
ltn

Erercise: proYe this. Flint:

,i
o o 4..... ....o-o-!t.-1..,r

' trrr

_:'
o__+ o _-+

(82) says in tlris case: tlret'e is o such tlral l- 'f', .o ^-) -l-* 1.-t.o;
Using the property that i doesn't colapse any map (is the inclusion),

it follows that o-]o -4 . i. a coeclualizer.

Ar
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(85) is a result of (B2). So (Ba) is (B1) and (B5) combined. Next
(86) t/ :V---+A is monadic (d la Beck).

In order to verify Beck's theorem you have to verify:

(i) t/ has a left adjoint (this is (t))
(ii) U has U-split coequalizers (this is (5))
(iii) U preserves coequalizers of U-split pairs.
(i") U reflects coequalizers of U-split pairs.

For (iii) and (iv) go back to diagram (??): reflects means: take a pair
olo to "4', then see down and use e.

So, [/ is a monad (] la Beck), and hence

v=As, t 
Ao

A
i is induced by

a map of monads T'---+S
or a map of theories Or---+Os
or T A---+SA being a split epi.

The reason is

Ur Fr A: TA u1i1rr,+11 : t-r@@))

Now using (82) with V : FA we get

rr1e1-a;(F A)

So

T A : ur Fr A---+Ur i F A : u F A : uiFr A
Canonical 1l---+S has each TA---+SA a split epi

TUB clsB oF Sets. The last thing is to go to the case A:,Sefs and
read off:

TuBoRBu 6 (Birkhoff). When A: &ts, )/ e &tsr is an abstract
Birkhoff subcategory if and only if V is HSP-closed i,n Setsr .

Pnoop. =+) easy because )/ has all these creatures and i reflects
them.

+) How given HSP, you achieve (81) and (B2)? Condition (81) is
literally condition H. Strategy: Set (A,o) be any 'I|-algebra in Setsr.
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For each V e lVl and each f , (A,a)---+i(V), form

=(v;)e ((A,"))': (A x A,l(a,a)l)
and using HSP, (.4, o)l :(v;)e l)/1. So take

E : I =(y,.r)e (A x A, [(*, ")l)v,J

claim: AIE e lvl, and it does the trick (Ba) is asking for. Indeed,
, select judiciously representatives ofr a full spectrum of :(%f) ... say

(vi,fi), j e J.

(.4, o) 
( " [i "')i..t. Il;u,)jet

and l[7.7 i(vj) e ] acco,ding to hte P-part of HSp. The congruence
relation for this is: 

t) _L :1"'Jt"')rr, (A'o)
(A,*) Il,vi)

(A,a)lE
tr

Summarizing,

o Por finitary operations and A-algebras get Birkhoff,s theorem
o For infinitary bounded operations and A-algebras get a version

of Slomiriski's theorem.
o Monads in Sefs (compact Hausdorff spaces, compact abelian

groups,...)
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[Counter]examples and corollaries (L2 / 2)

CouposrrE MoNADrcrrv (rnreLEABLENEss) mrooneus. When two
functors are composable? The setting is always this:

F: Foo Ft LI : Ut o yct

with ,t monadic ovel I via [.I0. F0, and so on. I monadic over ,4. rria

L1, F1, etc.
Let us see lvhat do rve need:
1. It is not harcl to see that fl u,ill be acljoint to [/ if f,s.F1 are

adjoint to [.h, L,i.
2. \\Ie also neecl .{ has coequalizers for Ii-split pails
3. ple-.erve and reflect coequalizers (?? this part needs to be com-

pleted)
In this setting, X will be monadic over "4 via LI, F, etc. if alterna-

tively

1. If the coequa,lizel in I for Lr1-split pairs of K-morphisms ale in
fact alreadl' split coequalizers in (. (some people in'ould sziy [,,i
is uery tripeable) or-

2. If tlo "pleserves and reflects" coequalizers in ,t and if .t has

coequalizels fol pairs Lr6 of lr,hich has coequalizels (t'o is crttdely
tripeable).

129

x

;t*!
1(

''ll,,
l1
A
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[Counter]examples and corollaries (tz / z)

ContposrrE MoNADrcrrv (rnreLEABLENEss) runonsx{s. When two
functors are composable? The setting is always this:

F: Foo Ft LI:fltoflct

u,ith .t rnonadic ovel K via Lro. Fs, and so on. I monadic ovel lt r,ia
fil, F1, etc.

Let us see lvhat do rve need:
1. It is not hard to see that fl will be adjoint to [/ if f,6. F1 are

adjoint to [,t6, Lir.
2. \\Ie also neecl ,Y has coequalizels for Lr-split pairs
3. preserve and reflect coeqr-ralizels (?? this part needs to be com-

pleted)
In this setting, X 'will be monadic over "4 via LI, F, etc. if alterna-

tively

1. If the coequa,lizel in I fol U1-split pairs of [-morphisms ale in
fact aireach' split coequalizers in fr. (some people u,oulcl say Lh
is uery tripeable) or

2. If tlo "preserr,'es and reflects" coequalizers in .Y and if # has

coeclualizels fol pairs Lr6 of which has coequalizers (t/6 i. crndely
tripeable).

129

x
ll

frL lr.r

I
K

il
tr,1 la
ll
A
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In a schema:

Here the triple in Abelian Groups is 7(G) : F(G), TT(C) : T(G),
where,F is the torsion free quotient. So pr: TT---+T is the identity,
and r7 : id ---+7 is G + T(G). What does it mean here to have an
algebra?

i ,, i , I

(8Br rl € j * l,

J ' I v'r 
Ito

Why sugh things are necessary to tripeability?

c o u x r B RtrxA NI P L tr 
"1J:, ::T::":l"J::;j"- 

di a gram :

1t
Fr,,.,i.,, f,.." q,,o,iortl lLio..ion

lt
Ab. Groups

1ttl!
Sets

T(G)

/l,,./ 
l,,/l

G:G
Tc must be i-1 and onto. So an algebra for the resulting monad is

nothing else that to be a torsion free group from the beginning. BUT,

Tblsion free Ab. Gr'.

11
(84 ) trl 

ir

II
Sets
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is NOT monadic. What fails?

k
nr-\+rv

0<-0,1<-1

-,
---

.-.-------------------*{

Set .l Ser .l --* .!61s, Sers-

-1,"\*l
Sets x ;i665 * Sets* x Sets*nor

no 
rto 

1..",,r,"lt

131

z l2v,r85) t7
O+O

(t,ll); <- t
o

where ED : {(k,")ln -f k , Zz} are the even diflerences.
(85) is U-split in Sets of the original pair in (84). Now,

ED ---------- Z

A

1

o]

If A is torsion free, then the {0} group is the only so the functor U
doesn't preserve the coequalizers for the U-spiit pafts (22 must have
been the coequalizers in Abelian Groups). Condition (2) fails, condition
(1) also fails.

This show basically that something must be added to the sole con-
dition of both [/o and U1 been monadic.

Now coming back to diagram (83). If you combine VTT and CT in
various ways:

./ l'\".,
I ,..\ | , r)t'( i( t't,( s

One could ask bizarre situations. One is this: Suppose (just fol the
sake of easiness) that there are no empty S-algebras and no emptrr
'1f-algebras. Denote by Sets- the categolt, of non-emtp1, s6f .s.

monadic

Sefs .- Sefs*
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Is it monadic? Yes, but the proof uses (B1) and (B2) in some places.

CouNrsRtrxA\,tPltr 2. Let Banach the real line rvith continuous real
linear transformations of norm iess than 1.

Banach

1ltt
1,1 lD : Ban(R.-)|l!
5et.s

rvhere D : Ban(R, -) : unit disc of (-).

Ban(11(n ), Ii) ry Sets(n, D(V))

!\,e have that the image uncler D of all continuous linear transfolma-
tions from /1(ru) to lr is isornorphic to D(\i"). Could this be tripeable?
NO. The triple

/7 -----.---r----- D(l t(n)) * D(1,1D(1,1rr)),,;
z H (e; )_, : d;, 

l-L

The notations become cnmbersome. Call n(i) : [i], so the elementsof
D(11(n)) are of the form

T'o'lj)
Jat,

Hence the elements of D(/1(D(lt(n)))) are:

ttI t,, ll,;[,,J1
Le Dt1ln1 L;e ' I

BUT, this is not monaclic:
Take the unit disc. Talie the open unit disc. It is a subalgebra of

the unit disc.
o ............ . 1- 1

. ............ o -1 ..".-----------_ -1
This is a split coecpralizer in Ban. What fails? f)ongruence relation
bnssiness.
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Rank (revisited) (L2 / 4)

In the context of past lectures, frx A : Sefs and focus on triples,
monads, theories, categories with adjoint pairs, . . . over Sets. Let

Sets -L O, and define:

Th.(o, d) :

Vn € Sets Vc-., e O(1, n)

lke Sets:llkll<t
1f e Sets(k,n)
!) e O(1,k)

a
such that

(86)

(If u is an ??-ary opelation, this is saying that onl1, k valiables matters,
the other.s remain unchanged). Tliis is the rank of a theory.

(free algebra).(x;15ets) :VnLr(F(n)) : yp U ti (r'(/))(utr(k))

r','i5,
For a tlipie lf : (7.r1.1-L).

tliple.(T) iff VrzT(n)- Vn U 7(/)(7(k))

/l'ili"
When a theory and a tripie goes hand by hand, i.e. rvhen

O:Or
O(i, n) ry Sets(1, T("))

both definitions coincide.
133

\./ \,/) \ ,' ltf)
t^
tL
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?. Given a theor,v 0 : &ts---+O, mean by its t-truncation the full image
O. of the lestriction

a,
/

ol.
where Sets. means sets of caldinality less than t. When one speaks of
algeblas, i.e. a functol O---+Sets. we obtain a cornposition

@"-Alg Setsoi'

1..',o t.f o,

I
+Sefs'P
restr. to t -"-"-t

TupoRuru 7 . If (X, FU) gi,ues ri,se to a monad T and theory @y

wlrich in turn yi,eld Setsr , tlren the following a,re equiualent:

L. rank t for the objects of X
2. rank t for the associated mon*d ff has rank < r)
3. rank r for the assaciated theory (@y has rank < t)
4. rank I r for Lrr Fr i,n Setsr
5. (background for thi,s):

0-Alg + 5et.so*

Sets. 

- 

11615

\
Y.

t-tluncatio" 
\

I

I

I

+

Sefs ---------- 5"1rsets"e
Y

5e1soi"

I

lcomtt. 

u,/ {),

5"1,rsetsor + Sets3p
Y restr. L

So there /s 6fl1:ays a'LL)oll to comltare 0-Alg and @r-Alg. (5)
is saying that the functor that lose sight of th high ltouters is
t'tonetheless an i-q omorphi srn.

o.-"4i
I

I\l
\I
,Sets
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6. @,-Alg---+Orl.-"41g is an isomorphism.

where t is a regular cardinal (see definition in lect ? ? ) .

Pnoor'. (t) + (2)...+ (5) + (1)
(t) + (2). Just note 7 : IJF when applied to f ,n,k.
(2) + (3). Since (see (86)) every n-ary operation is at most n-rayi

is k-ary for some k.
(s) =+ (+).

o(1, n) = Sets(1, Tn) :Sets(i, tlr Frn): Setsr(1, ur Frn)

(4) + (5). Why the dotted arrow in the diagram (in (5) above)
is an iso? Given a O.-algebra (A,a) from which one has meaning for
ax) € A, for a € Ak and ) € O(1, k) : T(k). So long as llkll < twish
now to have meaningful and well behaved expressions a* u) for a e A"
and cu € Os(1, n) : T(n). How to do it?

wer(n): U r(il!$D
/1f5"

There is k, ) e T(k),k -J+ n, such that

,:r(f)()) :P(/) o)
(from the perspective of the theory). So define a* a e Aby

a*ur:ax(0(f) o)) : (a*O(f))x):(aol) *)
This makes sense:

n

rT^
There are tedious verifications to check. (This is the only way of having
big n-ary operations in O-algebras with underlying sets of smal1 size
Setsr).

(5) =+ (1) A more general fact:
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If k < t, then F(k):7(1,k) : nat(t/A,L'). For general k', need to see

that the class nat([ik,U) is a set, namely

U U/(nat(Uft, Lr;;

rl,fli"
n,here [// is clefined as usual: (n -+ tlA) -S (* -+ I/,4) in

v;" !\ uk )+ u
The set nat([ifr, [/) pla1,s here the ro1 of free algebra for nat([i",tl). If
you mimic the ploof of the O.. tluncation,...

T
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V- Categories (L2/9)

References for this lecture:

1. Proceedings Conference on Categorical Algebra, La Jolla, 1965,

Springer-Ver'lag, pp. 421 - end.
2. Springer LNNI 99, pp. 384-ff
3. Springer LNM 195, pp. 209-ff

QuEsrtoN. What must a category V be doing (b" equiped rvith) in
order to let one use the objects of V as potential hom-objects fol other'
categories'/

Some examples of the liind of creatures I may have in mind for 7:
o V :Sets (ordinary categories)
o V :2 : {0, 1} (posets)
o V : R+ U {+-} : [0,oo] rvith ] (not necessarill, separated

symmetric metric spaces)
oY:AbQp
o V :6an (normed bounded (< 1) transformations)

Answering the question above: lve should have

(87) (A(8, C), A(A, B))---+A(A, C)

(88) 0---+A(A, A)

This is all rve need to ask. So we need to knou, u,hat is the function
of trvo valiables and the function of 0 r'ariable in the realm whele this
objects 1ive.

Categolies V should come ecluiped u'ith a (rve11 behavecl) explana-
tion (definition) (unclerstancling) of u'hat is to be meant by a "mor-
phisnr o[n iariables" {rr € Nr

(.-lr,'..,A,)---+B

where,4t e lVl, 1 < i 4 n (u'hen i : 0, I mean literally the ernptl,
string).

Exrupt-Bs In sets'::jil;' 
:-".r:: Tl:;l 

product

1aJto/
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and for the identity (88) take

0---+B is be B

rn AbQp' 
\A1. A2)---+B is Ar E Az----+B

and

0---+B is Z---+B

TBxlllrvE DEFINIToN oF MoNoIDAL cATEGoRy. When one has a
categoly V, let us wlite

M(V): free monoid generated by the objects of V

and b1,

(('4,,"',A"),8)
the sets of maps from A e lM()l)l to objects B e V , such that

((A), B) : V(A, B)

and if we have

(-4,... .--4n,) J\ a,

(A,rr+tr "', An,+rr) J3+ B,

:

\Ar,r+,nr+...{ns-1*1 ,. . . , Arr+rz*...*nr) J- Ar

and
(8r,. . . ,Bn)---+C

one presumabll, wants a composition

(89) S(fi,...,.fi),(A,,...,A,,,+...+,,,)1C
Asking to M()/) to be a categor'-v is asking a 1itt1e rnole than this and
at the same time a little less (i.e. less technicalit-r,).

PRoposo. Ask,,U'1():) to be a categoly and to be rnonoidal in the strict
sense using the monoidal structuLe of l14(V)1.

In ordel to formulate this concept in the right rvay we need to
introduce some notions.

Dontxtrtox 13. Say that a category has a multiplication (is a

m,onoidal category) i.t'r the strictest setTse if there are

1. A functorl E : tV x M---+M
lThe I nota,tion is to follow the convention



LECTURtr 26. y- CATEGORIES (12/e) 13e

2. An object I e M such that the following trvo diagrams commute

MxMr,vtM*8,,vt

ExM

MxM
a

xM

\ --t"\dtl \ -./ AMxM
THB ttoNoro.c.r A. Let A be the categorl, of finite \bn Neurnann
oldinals (the old familiar 1.2,3,. . . ) with orrler-pleserving functions as

the A-morphisms, ancl with the followign f as E: if a : n---+.1{ and

li : k---+K, then define

It is easy to see that E so defined is associative.
Why we need this? \\re rvant to deal in a clean rvay with the sub-

scripts that arise in the folmulation of equation (89). We lvant a mor-
phism

lM(v)l---+l^l
to be the effect on objects of a full fleclgecl functor,,\Z(V)---+A that
preser'ues E-products. and satisfies in addition:

Vn€ fl. V1 <k< 
^l.Vlength(,{) 

:r?, Vlength(B) :k.
YJ- e,V()r). .f , (.{0....,A,-r)--J(8o,..., Bx-1)

l! maps fi,("A;" ')n..-'1;1---+Bi suchthat f :.fr[ "'!,f,+-t
This is the clea,nest wa,r, to express equation (89)

The easiest exampie of such a category comes florn one that was
alreadl' a monoidal categor.v, but there are other illustrations as well.

Such a )/ (ah'eady with,AZ()/) information) is a, "multilineal cat-
egory". Nlultilinear categories are the most able lecipients of (hom?)
homomorphisms.

xM
l

ic

I
M

lnul il il n1oIE)(t):\,.
|.rr(,-ti)-L-f ili>rt
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)zl-carBcoRrps.2 If V is a multilinear category, then by a V-category

,t is meant a class lB of objects along with a double indexed class

X(A, B) € )) of "hom-objects" (A, B € l,ryl) whose composition rule is

(x (A, B), x (A, B)) ---+ x (A, C)

and unit maps

0 
j+ x(A,A)

as provicle d by M()/) such that composition is associative and units

behave like identity maPS.

If you are lucky V itself will be a v-category. Yo do not want it to
be randomly, but in such a way

M(V)(A,V(C , D)) : M(V)((A, C) ', D)

(note that we are seen in the equation above y(c,D) as an v-object).
Even better

M(V)((A1,' . ., An),y(C, D)) : M(V)((A.,''' A") I C, D)

Now, )/ itself is a V-category in a completely compatible way'

CIOsBO CATEGORIES. When V is a )-category in this way one says

V is a closed categorY.

Another way a category could be multiiinear (without being a strict

monoidal category), is maYbe

M(V)((A1... . , A").-)

is representable functor as a functor

V - -+Sets

with Ar @ Az e lyl. it is very difficult to assure

(A' a ,ar) e Az: Ar @ (A, * As)

They will be isomorphic, but there is no guarantee that they be equal.

This gives rise to monoidal categories that are on the references l gave

at the beginning:

1. They were defined in the article in Kelly, Maclane'
2. The second reference deals with ....
3. Why the proofs in (1) and (2) were so similar'

2Here we find again the story we already saw about natural equivalences: you

need the concept of natural equivalence, so you need the notion of natural transfor-

mation, but in order to state it you need the notion of functor and category' Here

is the same: in order to define V-categories, we need to go through many other

concepts before.
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