CLASS NOTES OF PROF. LINTON’S
LECTURES ON CATEGORY THEORY
(DRAFT)

Fall 1996
Wesleyan University

Lecture 1.
Lecture 2.
Lecture 3.
Lecture 4.
Lecture 5.
Lecture 6.
Lecture 7.
Lecture 8.

Lecture 9.

Lecture 10.
Lecture 11.
Lecture 12.
Lecture 13.
Lecture 14.
Lecture 15.
Lecture 16.
Lecture 17.
Lecture 18.
Lecture 19.
Lecture 20.
Lecture 21.

Contents

A category “is” a matrix-monoid (9/9)
Categories (9/11)

Functors (9/16)

A-Algebras (9/18)

Yoneda Representation (9/23)
Constructions

Free A-algebras (9/30)
Equationally defined classes (10/2)
Congruence relations and quotient algebras (10/7)
Lawvere’s Theorem (10/9)

Beck’s Theorem (10/14)

Adjoint Functors (10/16)

Proof of Lawvere’s Thm.
Continuation of the proof (10/23)
(10/28)

Proof 4

Monads (11/4)

T-algebras

Proof of Beck’s Theorem (11/11)
Triples v/s Theories (11/13)
Structure v/s Semantics I

3

15
21
25
31
37
43
49

61
67
73
79
83
87
93
99

105
109
115

4

Lecture 22.
Lecture 23.
Lecture 24.
Lecture 25.
Lecture 26.

Contents
Stuctures v/s Semantics 11
Birkhoff’s Theorem (11/25)
[Counter]|examples and corollaries (12/2)
Rank (revisited) (12/4)
V- Categories (12/9)

121
125
129
133
137

LECTURE 1

2

A category “is” a matrix-monoid (9/9)

Some key concepts. Let us start by reviewing three important con-
cepts that will apppear recurrently in the future.

PARTLY-ORDERED SETS (POSETS). Let X be a set with relation
< C X x X. A posetis a pair (X, <) subject to the conditions

a<a
a<bAb<c=a<c

for all elements a,b,c € X. (Optional, rarely really wanted: Va,b €
X:a<bAb<a=a=b)

MONOIDS. Let X be a set with e € X and binary operation
% : X x X—X that satisfies the equations:

EXT =T =T *k€E

ek (yxz)=(r*y)*z

[-INDEXED FAMILIES. Let A : I—T be a function, and write A(:) =
A; € T, hence A : [—T is nothing else but {A;};c;. Consider a
function a : F—I. Notice the correspondence between both presen-
tations:
T=P(F), Ai=a~1(:)
{4s ber F—=I

F=UA;

Square-matrix monoids. In the case when I = R x (', an [-indexed
family becomes a “matrix”, and if R = (', a square matrix.

f‘—:UAij
) l
Rx(C ——T CxC

Zv]EC-:R

6 LECTURE 1. A CATEGORY “IS” A MATRIX-MONOID (9/9)

What is the usual “product” of matrices (square or not)?

(Ao B)i, =Y Ai- Bj
jeJ

Here A is an R x J matrix and B is an J x C' matrix (1 € R,k € C).
The usual interpretation is: The entries A;j, Bjj are real (or complex)
numbers, or elements of some (commutative) ring, 3 is the summation,
- is the multiplication. What if the entries are other things, with mean-
ingful, relevant definitions for 3~ and - 7 And for which such contexts
can it make sense to ask that a square matrix A (with R = C) “act
like” a monoid, with associative, unitary A ¢ A—s A7

What arises as square-matrix monoids (multiplicative graphs, cat-
egories) when entries are required to be 0 or 1?7, positive extended real
numbers?, sets 7 The following table shows the answer in each case:

matriz_entries are what arises
0 or 1 posets
pos. ext. real numbers non-symm., non-sep. metric spaces
sets categories

The details are as follows.

PoOSETS. Define the multiplication (recall we have only 0’s and 1’s)
as the usual multiplication on the reals, and the summation as the
maximum: Y., Sg =def maxg{sr}. Also, if A;; =1 write i < j, and one
thinks “map from € to §” (for e = 0,1, § = 0,1) if and only if € < 4.

(A [} A)Z] = ZAzkAkj
k
(A L] A)Z]—>A”

CATEGORIES. Remember that now the entries of the matrix are sets.
The multiplication here is the cartesian product, and the summation
is the disjoint union. So, a square matrix A (C' x (') is a bunch of sets
and

A;;“=" a collection of maps getting to ¢ from j.

49 ”

=" a bunch of proofs of ¢ from hypothesis j.

[

Here

(A [] A)Z']' = Z(A’k . Akj) = Uk(Aik X AM)
k

LECTURE 1. A CATEGORY “IS” A MATRIX-MONOID (9/9) 7

(A ® A)ZJ
comp.
1 0
(A)ij
"L T, O O

hmo{ U Mla} SYMMETRIC\ SPACES Here the entries are non-negative real numbers
extended with co. The multiplication is ordinary arithmetic addition.
Finally the summation is the infimum: 3, = inf{s}.
k
and one thinks “map from r to s” if and only if r > s.

(A.A)ij
A — ineq.
0 00
A
: d(i,i) <0 (A)i
co 0 0

REMARK 1. There are generalizations of these three constructions,
namely U-promonoidal categories, where the “domain” U of matrix
entries is (the class of objects of) a “closed”, or a “monoidal”, or a
“promonoidal” category. But we are gettiné:: 4head of ourselves: e \odwne 20 .

LECTURE 2
Categories (9/11)
DEFINITION 1. A category A (with object-class | A|, hom-sets A(A, B),
composition rule o, and identity maps e4) is given by specifying:

1. A class |A| of objects.

2. For each A, B € | A|, a set A(A, B) (also written hom4(A, B) or
mor (A, B)) of morphisms (maps, arrows) from A to B.

3. For each A, B,C € A, a function

A(B,C) x A(A,B) — A(A,C) = (f,9)— foag

4. For each A € A, a distinguished map e4 € A(A, A) (also usually
denoted by idy4).

all subject to the following conditions:

(5) Forall A, B,C,D € A,
forall f € A(C,D), g€ A(B,C),h € A(A,B):

(fog)oh=fo(goh)

(6) For all A, B,C € A,
for all f € A(A,B), g€ A(B,C):

goes=g egof=f
REMARK 2. Some authors require that the hom-sets be disjoint. I

have not found any good reason to put in that restriction. I think that
this presentation allows more flexibility.

Usually categorical concepts are expressed by means of diagrams:

write A3 B for fe A(A, B)
9

10 LECTURE 2. CATEGORIES (9/11)

So, axiom (5) could be stated as:

and axiom (6) states that in the following diagram each path gives the
same result:

B
‘ ,S; xl en goep =g
—D ~.0
A S ¢ .
\\ liy% /,;? C A B !
3;” ™~ "l, - 1‘\
€B
egof=f
B
Examples.

SETS. The category Sets. Here |Sets| is some universe of sets (your
favorite model), and Sets(A, B) = BA. The composition rule is the
usual composition of functions.

TOPOLOGICAL SPACES. The category 7Top. Here |Top| denotes all
topological spaces and Top(A, B) all continuous functions from A to

B.

GROUPS. The category here is Gp. |Gp| is all the groups. On the other
side Gp(A, B) denotes all group homomorphisms from A to B.

ABELIAN GROUPS. AbGp is similar as Gp, but about commutative
groups.

MoDULES. The category A-Mod is defined for A alcommutative)ring.
A-Mop(A, B) is the collection of A-homomorphisms.

d

LECTURE 2. CATEGORIES (9/11) 11

MoNoIDS. If (M, -, ep) is a monoid (with multiplication @ - y written
just zy, and unity ep), let My be the category defined by:

IMu| =1, where 1 = {x}
Mpr(x,%) = M
Bapr Y = BY
€s =€)

DisCRETE CATEGORY. Fix a set X. Define the category Dy by
Dx|=X

0 ifxsty
1 fa=y

Dx(z,y) = {

Dx is called the discrete category on the class of objects X.

PoseTs. If (P, <) is a partial ordered set (poset), define Cp by
Cp|=P

0 ifz Ly

{(z,y)} ifz<y

The hom-set can be alternatively defined as

0 ifegLy
1 ifa<y

Cr(z,y) ={(z,y)} N <= {

CP($7y> = {

From this point of view, Dx is nothing else than the category D(x <),
where < is the discrete order in X.

NATURAL NUMBERS. Using the examples of Monoids, Discrete and
Poset Categories above, we can define:

1. 0: the empty category.

2. 1: the 1-object, I-morphisms category.

3. In general, for each ordinal number n, n =C,.

4. Also we can define alternatively 2 as the category

<

L 0] L4

5. 3 as the category

/1\

0 2

12 LECTURE 2. CATEGORIES (9/11)

6. 4 as the category

1
7. An so on: n would be the oriented graph with n vertices, and
edges from ¢ to 7 for each 1 < 7, 1,7 € n.
8. M 4): It is difficult to draw it here: is a o with one circular
arrow around it for each natural number.
Note that we have at least 3 different categories that represent the nat-
ural numbers: Dy (the discrete category), Cy (with the order relation
of N), and My 4) (with the monoidal structure of N).
A-ALGEBRAS. One last, and important, (family of) example(s) of (a
type of) category: A-Alg. Fix a set A and a function n : A — |Sets].
By a (lawless') A-algebra (better would be: “(A, n)-algebra”) is meant
a set X together with one honest-to-god function

X, X s x

for each w € A. We define |A-Alg| as all A-algebras, and the arrows
of this category, A-Alg((X, (Xu)wea), (Y, (Yo)wea)), by

{f € Y¥|VYwe A, diagram (1) commutes}

‘Xn(w) (f))/n(w)

(1) X, Y,

X f Y
It is easy to see that the composition works, checking the commutativ-
ity of the outside box in the following diagram (this means that you
can go ‘by different paths’ in the diagram):

Xn(w) (f> Yn(w) (g> Zn(w)

Xy ¥, L

X

Some Constructions.

Y Z

gy 064

{-1q AR ':M 2 ¢)} |
'We have sfillno way'of expvesér—i‘%g equations{ o1 Mw5) .

LECTURE 2. CATEGORIES (9/11) 13

THE POSET OF A CATEGORY. If X' is a category, write POy = |X|,
and define the relation < in POy as:

A <po, B iff there is f € X(A, B)

So, we have that A <pop, A because ey € X(A, A), and if A <po, B
and B <po, C, then A <po, C by property (4) of the definition of
category. So, to every category X we can associate a poset POy. It
can be easily checked that POD(X,S) = (X,).

THE OPPOSITE CATEGORY. If A is a given category, the opposite
category of A, denoted by .A° is given as follows:

|A%] = | A
.AOP(A,B>:.A(B,A) fOAopg:gOAf
It is important to notice that (A%)? = A. The classical model for
this construction is the reversing of the ordering of posets, and in non-
commutativerings and groups by reversing the operation .,y = y-z).

Generally, A and A% will have very different properties, and will
not resemble each other at all, e.g.

Sets Sets?
() is a universal source 0 is a universal target
: : . . Yet some-
1 is a universal target 1 is a universal source
Ve(x#0V3If:1—2) false here!

times A and A° may be virtually identical, as with locally compact
abelian topological groups, according to Pontriagin duality.

THE PRODUCT CATEGORY. Given categories A and B, define their
product by

|A x B|=|A| x |B]

{A x B}((A1, B), (A2, By)) = A(Ay, As) x B(By, By)
The composition of arrows works in the obvious way:
o (A1, By)
Ak ke
! (Az) Bz) 'g20 f2
T
t (A3 , B3) ¢
Notice how one large family of categories X' looking just like X% is

given by & = A x A°. For, generally,
(A X B)? = A® x B

14 LECTURE 2. CATEGORIES (9/11)

So, in particular

(A x A%)P = A% x (AP)? = A? x A
and it is not hard (using (z,y) — (y,)) to make X°? = A% x A “look
just like” A x AP = X.

THE “SLICE” CATEGORY. Given a category A, for [€ A define the
category A|; (“A slice(d over) I”) by:

Al = U, A T)

A B
Alr Fl , JG —{alA*sB|Gop=F)
i

that is, the objects are arrows with target I, and the arrows are maps
A % B such that the following diagram commutes:

A s B
I

LECTURE 3
Functors (9/16)
We will start with an example. Consider the “transformation” U from

the category A-Alg to Sets, sending each A-algebra to its underlying
set, and a A-morphism to the set-function underlying it.

A—A]g (X, {Xw}wEA) _j’ (Y7 {YW}WGA)
U !
¥
Sets X / Y

The composite can be done in the natural way. As you see, things are
the same. We are just looking them in a different framework. This is
just a particular example of a more general concept:

DEFINITION 2. Given categories X', A, by a functor from X to A
is meant any couple of rules

F:|xX| — |A|
VX,YeX F:X(X)Y)— A(FX,FY)
meeting the following requirements:
Fgo f)=F(g)o F(f)
F(G‘X) = eF(X)

We can see that our example above is a functor, called Ua. In the
same way that small categories helped us understand some basic ideas,
functors between small categories help clarify concepts too.

EXAMPLE 1. Functors F': 1 — X. Here we have F'(x) € A and
F(e.) = ep(*). Notice the correspondence:

1-5x = F(x)elx|
*— A = AcX

i.e. a functor F': 1 — & “is an object” of X.
15

16 LECTURE 3. FUNCTORS (9/16)

EXAMPLE 2. Functors F' : 2 — AX'. Such a functor fits in the
following diagram:

and therefore “determines” two objects, A = F(0) and B = F(1) of
X. But wait: there is more. What is this functor? It is just a map
A -5 Bin X arising as a = F(0 < 1) (with label, source and target).
In some sense, “2” is the platonic version of a map, and A -~ B its
concrete realization.

Now consider the following diagram:

Take X —+ Y in X. We have the following diagram:
F(X)=0(X,0) — G(X)=0(X,1)

F(a)|=0(eido) G(a)|=0(c,id1)

F(Y)=0(Y,0) — G(Y) =6(Y,1)
But even more. For each X € X:

O(ex, 0 <1) = Ox : F(X) — G(X)

LECTURE 3. FUNCTORS (9/16) 17
N.a.s.c. that the data F'(X),G(X), F(a),G(a),0x as above that arise
from the functor § : X x 2 — A are:

1. F define a functor X — A.
2. (& define also a functor X — A.
3. The various maps 0x : F'(X) — G(X) fulfill:

Forall X,Y e X, foralla € X(X,Y):

F(X) 2~ G(X)
(2) F(a) "-!{(aé) G(a)

P(Y) = G(Y)
diagram (2) commute.

It is clear that F' and G are functors. The commutativity of diagram
(2) follows from the three ways we can see the functor (o, <)(Xo,0 —
(Y1,1), which is the diagonal in diagram (2)

(Xovl)

It is easy to see that the converse holds too, that is if we have conditions
(1),(2) and (3) above, we have a functor from 2 to X. This is what
does it mean to have a natural transformation from F to G. So we
have now two viewpoints to see natural transformations.

DEFINITION 3. Given functors F,G : X — A, a natural trans-
formation 0 from F to G “is” a family {fx}xexr of A-morphisms
Ox : F(X) — G(X) such that diagram (2) commutes.

Or, in other presentation, a natural transformation between func-
tors F,G : X — A is a functor

: X x2—A

such that composing with

X
w
X x2

X (id*vl)

18 LECTURE 3. FUNCTORS (9/16)

to give exactly I’ and G.
CATEGORY OF CATEGORIES. Given categories A and B, appropriate
“maps” from A to B are the functors F' : A — B. We can build the
category Cat, defined so:
| Cat| = { “all” categories}
Cat(A,B)={F: A— B | F functor }
Composition is defined in the natural way. This is a category except
. 1t makes no sense for set theory.

CATEGORY OF FUNCTORS. Now, considering Cat(.A,B) as objects,
we can form a new category, Func(A,B), whose arrows are natural
transformations:

|Func(A, B)| = Cat(A, B)
{Func(A, B)}(F,G) = n.t.(F,G)

Given three functors F,G, H : X— A, and natural transformations
F4 Gand G2 H as in the diagram below

F
9

X G v A
H ia

we have for each X € A':
F(X) 25 G(X) 25 H(X)
and it is not hard to verify that the family {(A o 0)x}xexr defined as
(Ao f)x = Ax o0y

is a natural transformation.

CAN WE CONTINUE?. Once again, consider {Func(A4, B)}(F,) and
take two natural transformations (as objects):

I

_

X gy 3 gs, A
G

Question to sharpen mind’s teeth: What would be 59 (i.e. an arrow
between natural transformations?)

FUNCTOR IN TWO VARIABLES. Let us generalize the construction in
2. Take a functor

xxy-LoA

LECTURE 3. FUNCTORS (9/16) 19

and write
Tx, =T(X:,—): Y — A
T* =T(-,X,): X — A
Recall 7% and T were F' and G respectively in example 2. Is there some

side-condition we can impose so that data of this sort to be arising from
Tx, and T*1 7 The answer is yes (and exactly the same condition):

For all (Xo % X)) € X, for all (Y, 5 Vi) € V:

T(Xo, Yo) 222 1(x0,11)

(3) T (a) TY (a)
T(X:,Ys) 2 i x,, v

should commute. The reason is exactly the same as in the special case
of 2 (there Y was 2 and 3 was idg or idy or <).

(X07)/1)
(id,8 a,id)
p (@5)
(Xo, Yo) (X1, 1)
(XI) }/0)

You could hope that maybe a function f : X XY — Z is continuos
iff each fx and f¥ are continuous, plus some compatibility condition
replacing the commutativity of a diagram like (3). Unfortunately no
such translation of condition (3) seems possible or meaningful in this
context.

LECTURE 4
A-Algebras (9/18)

Consider the following diagram defining UX(X) = (Ua(X))™:

A-Alg
Ua (Ua)"
Sets 9 Sets

Sets(n, —)

What should be understood by nat(Ux,Ua)? Does nat(Ux, Ua)
form a A-algebra? When a ring-theorist, a group-theorist think what
are the “natural” operations for a ring, for a group, they think in op-
erations of certain arity, such +, *, an so on. The “natural” operations
in a lattice include both joins, meets, etc.

NATURAL OPERATIONS. By a natural operation A on A-algebras (of
arity n (n a set)) is meant a scheme of some sort by which, for each A-
algebra (X, (X,)wea) and each n-tuple @ = (- ;...);e, from X, that
is # € X", there is associated in a “natural way” a value A(z) € X.

A natural way such that whenever X T vis already a A-algebra
homomorphism, then

G @icien) = A0 f(®i) - ien

(every A-algebra must “preserve” this operation), i.e.

A is just a natural transformation Uy — Ua

Let us present a very ‘natural’ collection of natural transformations:

g :n — nat(Ug,Ua)
T o= g
21

22 LECTURE 4. A-ALGEBRAS (9/18)
where the family (¢; : U —Ua)x is just the family of projections':

(gi)x + (Ua(X))"—Ua(X)
(wl,...,xn) = Z;

(Note that for algebras with more than two elements, g; # g; for i # j.)
Another collection of natural transformations is the following one,
given by A: Given w € A, we can find

Mo (Ua)")—Ua
defined (let us write w instead of A, to simplify notations) by
(Ao)x # [X")—|X| = U (X)—Ua(X)
= X, ¢ | X" —|X|

To check that this is a natural transformation we have to check the
commutativity of the following diagram:

Xn(u}) Yn(w)
Xw Yo
X f (homo) Y

DERIVED OPERATIONS. (Nonetheless) given w € A and given n(w) n-

ary operations \; € nat((Ua)",Ua), we wish to define w((- -+ A; -+)jen(w)) €
nat((Ua)™, Ua). So, for each A-algebra X, let us give the X** compo-
nent of w(A) as the composite:

{w((--- A5+ Djen)) }x ¢+ | X

Ezercise. Why is this a natural transformation as indicated? (hint: has
to do with the fact that the composition of natural transformations is
a natural transformation).

Universal algebraists also speak of derived operations, or polynomial
operations on A-algebras ... Those, of arity n are just the natural
operations in the subalgebra of nat(U%, Ua) generated by the previously
described ¢g; (i € n). Certainly each original n-ary w appears there
(more accurately, what we called A, does) as

("'(AJ)X"')]ETL(W) X

X

|X|n(W)

Aw :w(("'gi"')iEn

IThe notation g; to suggest the i*"-generator of a free group in group theory.

LECTURE 4. A-ALGEBRAS (9/18) 23

It is easy to check. Indeed, when n = n(w),
|X|7Z l) len |X|7Z lleln
S0
()\w)X - Xw oid = Xw

GENERATED SUBALGEBRA. Let A, n : A—|Sets| be given, let A be
a (not necessarily small) A-algebra. Let GG C A be a subset of A, and
let r = the least regular cardinal wiht no n(w) cofinal in it%. (This r
exists if A is a set). Let us call r the rank of (A, (n(w))wea). By a
A-subalgebra of A generated by G C A, we mean the smallest subclass
S C A “closed under the operations w € A”, that formally means:

V(a) € A"w € AYi € n(w)(a; € S = w(a) € 5)

Crucial Claim: the upper bound for size of S is a simple set function

of r and G.

PROOF. (Due essentially to Baire: is just the Baire construction of
Borel sets).

Xo = G

Xl = ‘\/0 U U Xn w A
wEA

X;=X,U | w(Xf(‘“))
wEA

Now, having X, for A < 3 define

vp= U XU U w|J X))

ALB wEA ALpB

(this works for limit and succesor ordinals). So is clear that X, is a
subalgebra of A and contains G. O

2If you consider only infinite cardinals, it is enough to say ‘least regular cardinal
bigger than each n(w)’. Recall that r is regular iff is the supremum (sum) of
strictly fewer, each strictly smaller, sets is (itself) strictly smaller. The first ones
are 0,1,2, 8o, Ry,, ... Also, n is (capable of being) cofinal in R if there is a function
fin—RwithVAeRIien: f(i) > A

LECTURE 5
Yoneda Representation (9/23)

The natural operations on (A, n)-algebras have an algebraic structure.
The derived operations on (A, n)-algebras (which are contained in the
natural operations) also have an algebraic structure. How do this struc-
tures relate?

The answer will be easier introducing some more categorical con-
cepts. Consider a ring A and the following ‘equation’:

ring A _ categories

() Homy (A, M) = M~ ?

What is ‘?”. In other words, what is the analogous in categories of
the isomorphism between the set of ring-homomorphisms ¢ : A— M
and M itself? (recall that this isomorphism is the correspondence

P> (1)),
The answer begins surprisingly; consider the functor
A% x A A=) Sets
defined as in the following diagram:
f
A B A(A, B)
g N~ - / \Qﬂ
Al B’ A(A', B) A(A, B")
ho\\ —og
A(A', B

Now recall the construction of the product functor in lecture 2:

O: X xY—Z
5

26 LECTURE 5. YONEDA REPRESENTATION (9/23)
Let us see it in more detail: it defines two maps:

X -2 Func (3, 2) X+ O(X,—)
and ~

Y -2 Func (X,2) Y —0(—,Y)

From this point of view the map hom 4 can be interpreted

(5) homy : A”—Func (A, Sets)
and
(6) homy : A—Func (A%, Sets)

It is a matter of taste which one we will study first. I would prefer to
start with ‘77 to avoid some confusion at first with the reversing of the
arrows in the domain of ™.

N. Yoneda (around the year 1954) was the first to call the attention
to the marvelous properties of this functor. It is called now Yoneda
representation, but it is more, in fact it is a full embedding.

Let us consider the diagram:

gy
A I =gy Func(A%, Sets) = Sets*”
A "4(_7*’4)
o ! oo —
B f=foa fo- A(~, B)
B : Bo—
A\ 4
C A(-,C)

That is how hom behaves: for each object A € A you get a functor
A(—,A) : A?—Sets that behaves contravariantly (i.e. it ‘reverses’
the arrows), but much more: for each arrow f in A4 you get a natural
transformation, f o —, between the corresponding (to the respective
objects) functors.

Now we have a thorough description of a morphism

A(A,C) 5 nat(A(—, 4), A(-, 0))

LECTURE 5. YONEDA REPRESENTATION (9/23) 27

Yoneda’s observations:
1. hom s I-1 and onto.

2. (really contained in (1)) Simplify notations for a possible proof
and write 7' = A(—, C) so that

A(A,C) 5 nat(A(—, A), A(—,C))
becomes
T(A) 5 nat(A(—, A),T)

With this new presentation we have:

PROPOSITION 1 (Yoneda’s Lemma). For all T' € Sets*”, for all
A€ |A|,
nat(A(—, A),T) = T(A)

This is the ‘right’ generality of the statements above. We could
have proved (1) above, but in fact we will see that we do not need any
general features of A(—,C') in the proof.

PrOOF. Fix A , fix A € |A|, fix T : A%?—Sets. First, let us

contemplate for a while the following ‘diagram’:
T(4) nat(A(—, 4), T)

Both sides are in splendid isolation ... How can you get from one to the
other? Given f € T'A, you need to find a natural transformation ¢(f) :
A(—,A)—T. A natural transformation is a family of arrows indexed
by the objects in the category: So let us take X € |A| (the common
domain of both functors A(—, A) and T'). Hence we are reduced to
define the map {¢(f)}x : A(X, A)—T(X). How can this be defined?
You must take an arrow a : X—A and get an element in 7'(X). Here
is the (straigthforward) solution:

- T(A) —2— nat(A(—, A),T)
e Ae(Hixl(a) ={T(a)}(f)

Why ¢ is 1-1 and onto? Presumably from the existence of an inverse
Y for the map ¢:

T(A) v nat(A(—, A4),T)

Recall the example of the ring in equation (4): take the identity to the
identity. Let us do the ‘same’ here: if A € nat(A(—, A),T'), define

(8) P(A) = Aalida)
Now come the verifications:

1. v is well defined

28 LECTURE 5. YONEDA REPRESENTATION (9/23)

2. ¢ is well defined: is it really a natural transformation?
3. poyp =id
4. o =1d

All of them are relatively simple:

(1) is immediate.

(2)p is a natural transformation. Fix Y s Xin A, and f € T(A).

Ax, 4) 2% 1x)
(9) —o¢ T(¢)
A,) A gy
To see that (9) commutes, let be a € A(X, A), so we have:

a -2 o(N)x(a) = {T(a)}())

aot P (1o)(r) L TOUT @)

T is a contravariant functor from the perspective of a, so the equality
in the lower-right corner holds for all f.

(2) Why ¢ o ¢ = 1d? Why, given a natural transformation
A A(—, A)—T, does {p o1} = A7 We have to check

VX €Al [{yo v (Mlx = Ax : A(X, A)—T(X)

Now in order to check that these two functors are equal we have to
evaluate them, that is: for all « : X— A check

(10) (e(Pp(N))x(a) =Ax(a) (e T(X))

Now is time to start deciphering the meaning of (10). By definition of
(0

(p(#(1)))x (@) = (p(Aa(ida)))(a)

now applying definition of ¢ in (7)

= {T(a)}(Aa(ida))

LECTURE 5. YONEDA REPRESENTATION (9/23) 29

Finally, using the fact that A is a natural transformation, is easy to see
that the diagram on the left commutes, and hence the equality (10)
follows (diagram on the right):

A4 A4

A(A, A) T(A) idg ---=------ » Aa(ida)
—oa T(a) E— oa ET(a)
Ax ; Ax M
AX,A) — T(X) a----- » Ax(a) ={T(a)HAa(ida))

As you see, the proof goes in the only possible way you can go ...
(3) Why is ¥ o ¢ = idr)? Let f € TA, why is ¥(p(f)) = f?
Applying the definitions of ¢ and ¢ we have:
P(p(f) = ¢(f)alida)
= T(ida)(f)
= {idra}(f) = f
O

All this is exactly was is going in the case of rings (recall ‘equation’
(4)) with the isomorphism

homy (A, M) Sy M A= Am

The only thing is that in A there is only one element, but in Cat there
are many objects which plays the role of 1 in the original construction
(see equation (8)).

LECTURE 6

More on constructions (9/25)

We could summarize Yoneda Lemma saying that there is an explicit

map between the upside and the lowerside paths in the following diagram?:

(Sets™™)? x Sets*™

Y’op y \om
SET

A% % SetsA”

evalua;k /

Sets
That is, for every A € A? and T' € &ts*”, the functors nat(A(—, A), T)
and T'(A) are isomorphic. Nice presentation if we discount the fact that
we do not know what ‘isomorphic’is ... but:
DEFINITION 4. Let A be a category. Two objects A, B € X are

isomorphic (in X') if there are X-morphisms A L Band B -4 A
such that:

1. go f=idy
. ng=idB

We proved only that T'(A) N nat(A(—, A),T) is a bijection. But
there is more:

PROPOSITION 2.
(11) © = QT " T(A)— nat(A(—, A), T)
is natural in A € |A%| and T € |Sets*™ |

'Two remarks need to be made: (1) Given a functor F : ¥ —Y, it is straight-
forward to check that F'°P : X —YP is a functor. (2) SET could be ‘enourmous’.
31

32 LECTURE 6. CONSTRUCTIONS
PROOF. Exercise: use heavily the fact that 7" is a functor. O

The following corollary is used in practive more than Yoneda Lemma,
itself.

COROLLARY 1. If for objects A,B € |A|, A(—,A) and A(—, B)
are isomorphic in SetsA” | then A and B are isomorphic in A.

Proor. Consider

Y
A(A, B) e nat(A(—, A4), A(—, B))
AL)
g Y(g)
A+—B —
The facts that f o g =id and go f = id in the suitable places plus the
naturality in (11) above gives us the desired result. O

How can this corollary help us in showing that two objects are isomor-
phic? Let us see some examples.

Take T € |Sets*”|. Think the easiest functor you can imagine:
T(A) = 1. This functor is covariant and contravariant:

AX, x) =2T(X) =1

Sets is a sort of category of “wish-lists” for desirable objects A should
have. For example, in differential equations, when looking for an ana-
lytic solution of a certain equation, you first obtain a generalized func-
tion solution (a distribution) and then you particularize and try to get
the right one with the desired properties. In general, you look for the
general solution to a problem in a place where it is easier to find, and
then look down if you have an isomorphic object in the right place.

In the same way as the Yoneda functor is called Yoneda represen-
tation, i.e. represents the objects of A as the functor A(—, A).

Terminal objects.

DEFINITION 5. If the functor

A Sets
_al — 1

is representable, say T'(A) = A(—, *) for some * € | A|, then * is called
a terminal object of A.

EXAMPLES.

1. In (abelian) groups: {0} is a terminal object.
2. In Top, the one-point space is a terminal object.

LECTURE 6. CONSTRUCTIONS 33

3. In rings with unit: depend on what do you mean by ring with
unit.
(a) If you allow 1 = 0 then the one-element ring is a terminal
object.
(b) If you require 1 # 0, there is no terminal object.
4. A-algebras: the one-point A-algebras are terminal objects.

As you can see, in most of concrete cases, terminal objects exist, and
looks like one-element objects.

(5) Now consider the category Cx <). An element * € C is terminal
in C if and only if * is a top-element in the order of X. So,
for example, Cy <y has no terminal object, while Cqy >y has a
terminal object.

(6) (one-minute quiz) What does it mean for My to have a terminal
object?

It is easy to see that the functor 1" : A?—Sets, with T'(A) = 1 is
terminal in the category Sets*™:

A F(A)
o F(a) T(A = T(B)
B F(BJ

is a natural transformation by default. This construction is so general
that it applies to almost every case (of course there are exceptions).

Products. The way to obtain interesting properties in a category is to
expand interesting construction in Sets to Sets*”. Given two functors

S, T € SetsA™,
P(A) =S(A)xT(A)

S(a) x T(a)

P(B) =S(B)x T(B)

If S=Y(X)and T = Y(Z), what can P = S x T be representing?

Let us see; we have:

A(=,7) 2 A(—, X) x A(—, 2)

34 LECTURE 6. CONSTRUCTIONS

now considering — =7 we are the following situation:

X VA
Now think in topological groups, vector spaces, A-algebras, etc. What
is a solution to this diagram? 1In the case of Posets the answer is
ilustrative

z
Here the “product” p is the glb(x, z) (or inf(z, z))(or o A 2).

In the majority of the set-based categories the product means this.
But the product is not generally available: Take for example the cate-
gory of fiels. It is easy to realize that there can be no product there.

As we saw, the product object arises as the product of the represen-
tation. We can make this construction more general: nothing prevent
us for taking more than two elements. So, let I an index family, and

take a map [— A, that is a family of objects (X:)ier C | Al

such that (--- ,t; =m0t -)jer.
There may be no such object in A. Though it is clear that looking
at Y (X;) € Sets*™ there will be

[IY(x3)

el

LECTURE 6. CONSTRUCTIONS 35

This can be sumarized asking: there exists [T;c; X; such that
Y(J[X:) = [[Y (X))
€1 1€l
(In words: Does Yoneda recognizes the proposed object as the prod-
uct?)

Equalizers. A small graph in general is not a category (the composi-
tion of arrows is missed), but there are some cases in which it is:

(a) .

(6) —

(¢)

We will see they play an important rol in categorical concepts. Take
now, for example, the known construction in graph theory:

7

{9€G:s(g)=r(g)} CG H

S

What is this set? It is just the equalizer (also called difference-kernel) of
s and r (the collections of witnesses that think -by personal experience!-
that s and r are equal, no matter what s or r do to their neighbors).

DEFINITION 6. Given two maps in A with common source and
target
a
© .4
B
an equalizer for (o, 3) is a map e as in (12) such that in the following
diagram

(12) E B

A B

Vi

for all arrow t such that at = 3¢, then there is a unique arrow # that
factors through e, i.e. t = et

36 LECTURE 6. CONSTRUCTIONS

What is really happening here is:

Y(E) —=— Y(4) e, Y(B)
Y(3)

eql—, %°7) C A= A)—= A(-.B

(- Gol) € A === A B)

This are two point of viewing the same thing. Now, when you have
products and equalizers you have a lot more.

LECTURE 7
Free A-algebras (9/30)

We are going into some important concepts in (A, n)-algebras, namely
“equations”, “equationally definable”, an so on.

First, it is good to recall here some aspects of the Yoneda repre-
sentation we saw in lecture 5. If in the Yoneda map (see equation (6)
there) we put A = B (and hence B = A°?), we get the following map
(see also equation (5)):

v

B Sets®
A — B(A,—)

that is
B(A7 C) = Bop(o’ A) = nat(B(A7 _)7 B(Cva _))
and we can easily check that the covariant functor have no more (nor

less) natural transformations than the contravariant one in (6). More
generally we have (the arguments are the same as in lecture 5):

T(A) = nat(B(A,—),T)

which is nothing else than the other version of the Yoneda map.

With this observations, we can prove the following important result:

THEOREM 1. Given a set A and “arity function n”, and given a
set! k, it turns out that the covariant set-valued functor

U k
(A, n)-Alg (Ua) Sets
is representable, indeed we have
(Ua)* 2 Y(F(k)) = Y (Py)
where F'(k) and Py will be defined below.
lAgain, we are using the letter k to suggest psicologically a natural number,

but could be any set.
37

38 LECTURE 7. FREE A-ALGEBRAS (9/30)

Let us explain the contents of this proposition before proving it.
We are asserting that there is F(k) € |(A,n)-Alg| for which (Up)* =
Y (F(k)). That is for each (A, n)-algebra A

Sets(k,Ua(A)) 2 UF(A) 2 Y(F(K))(A) = A-Alg(F(k), A)
Think in more familiar examples, like groups, rings, vector spaces:

1. Groups: On the left, the elements are functions 7 +— ¢;, which
defines a free group in k generators FG[- - - g; - - - | that is, words in
g; and g; (f. ex. g;g;g: should be thought as z;z;2;") identifying
9:Gi, € and g;g;. (formally: g;g; ~ € ~ gig;). On the right:

P Ty g Ty
FG[-gi--T 9 9

2. Rings: On the left, the map ¢ — ¢; give us the ring Z[- - - g; - - * Jiek-
On the right hand side, we have the ring of polynomials in &
free generators (Think of the elements of F'(k), the polynomials,
as ‘operators’ from A™—— A defined as the evaluation in each

variable).
L LTy R
L gil /
Z] | g — 1 (extend ‘naturally’)

3. Vector spaces: On the left hand side, we have R*). On the right,
we find linear transformations extended by linearity.

Z'I—>U2'
v

k
1 g
gl 4_: V; (extend lineally)

R (%)
Once one of this examples rang the bell in your brain, we can continue
with the general case, that is the proof of the proposition 1.

PROOF. [of proposition 1] Let
Fr. = nat((Ua)*, Ua)

endowed with structure of a (possible too large) A-algebra. Let F) the
subalgebra of F; generated by the k™ projection transformation.
Now let us define P,. We will define it inductively:

B=|) X =%

a<lr

LECTURE 7. FREE A-ALGEBRAS (9/30) 39

where r is defined as in the last section of lecture 4, and X, is

R

wEA f<a

So Fj is a set even though Fj could be a big class. (Notice the
‘similarity’ with the construction in lecture 4: there we wrote w(a),
here we have {w} X a). In Pj the elements are tuples. (Think for a
moment in rings again: take fi,..., f, polynomials in the variables
T = (21,...,2¢), p a polynomial in n variables, then p(fi,..., f.) is a
polynomial in &, namely p(fi(&),..., fu(Z)).

k=XC - CXsC-CXaC--C P

restriction to &
a A-homo
?

prin
Ua(A) A

The construction in =-direction is done by induction. We are going to
illustrate it by an example: Xy C X;. We know

X=X U | ({w} x x5
wEA

In Xy the map is already given: a : Xo——>|A| (recall the notation
|A| = Ua(A)). So for the rest, let us take w € A,

w

|A]

It is clear that this construction obeys (= 0 <) = id and (<=0 =) = id
and = and < are 1-1 and onto.

Py is called, in universal algebra, functionally (totally) ‘free A-
algebra, or also polynomially free A-algebra.

Now let us go to the second part of the proof:
(Ua)* =Y (F(k))

Consider the diagram (j is the inclusion):

k Fi
"L \ Fy / l
A | A

A

40 LECTURE 7. FREE A-ALGEBRAS (9/30)

The tricky part is given k& — |A| to get a map Fr—A. What we
will do is to construct an arrow a : Fy—> A such that a|; = «, so the
restriction of a to Fj, will give us the desired arrow.

How can we expect there is such a thing? Consider

A:UE—Ua
Aa: (Ua(A)F—Ua(A)

What is the only piece of information we have?: the arrow a. So
Aa(a) € |Al. Is A = Aa(a) a A-homomorphism from Fp—A? Let
w € A, let £ € |F|"@). For each i € n(w), we have & € Fj, so we can
apply (&)a(a) € A. Thus

(Fi)r) — |4

Fr

so taking ¢ € (F)"“@) we have:

(13) "

Wl Eivee) = (w(e i'--))A(a); (- (€)ala))

Why this are the same? You have just to recall the definitions of w,
Fr, etc.:

& Us—Ua (1 € n(w))
also recall

) &an lw w
wletye) = UL | Jente) e Us

So in the attempt to evaluate the path through the left-bottom corner
in the diagram (13) we get the path through the upper-right corner.
So finally consider the map a — a|p, and we are done. O

So Y(Fy) and Y(Py) are isomorphic to a third thing, ergo
Y(Fy) 2 Y(P)

LECTURE 7. FREE A-ALGEBRAS (9/30) 41

Also we have for Fj, the following:

(14) Fr = nat(Uk,Up)
(15) = nat(A(Fk,—),UA)
(16) = Ua(Fy)

The step from (14) to (15) is because of the observation we made at the
beginning of the lecture, and from (15) to (16) is just Yoneda Lemma.
An important case is the particular case k = 1

nat(Ua,Un) &2 F

which are the derived unary operations.

LECTURE 8
Equationally defined classes (10/2)

EQUATIONS. Given (A, n) (some people have called this species) and
considering (A, n)-algebras and the functor

Uy : (A, n)-Alg— Sets

by a (A,n)-equation in “set-of-variables” X, mean any ordered pair
e = (eq, e2) of natural transformations
€1

€2

Equivalently', any pair of members of Uia n)(Fiam(X)).
VALIDITY. If (A, {Au}uen) is a (A, n)-algebra, we say e is valid (holds)
in (A, {A.}wea) if

(€1)(4,(40)e) = (€2)(4,(Au)w)

Generally, one asks about an entire class £ of equations, whether in a
given algebra, every equation from & is valid. So let us denote

((A,n),E)-Alg = {A € |A-Alg| : each eq. of € holds in A}
It is immediate that

((A,n),g)—./l]g C (A,n)—Alg

VARIETIES. Any category of the form ((A,n),E)-Alg for some set A,
arity function n and class £ is a variety (in the Universal Algebraist
“lingo”), or an equationally definable class of ((A,n),E)-algebras.

Group theorists like to think in terms of the signature {o,()7}, e}.
Then they restrict to study “subvarieties” (abelian groups, p-groups,
etc.). Lattice theorists think in term of the signature (V, A, 1,0). Also
they are interested in particular varieties: distributive, modular lat-
tices, etc. Then they go to sub-sub-varieties an so on.

'In eq. (17)’s setting, what you ask is what you get. In Ua n)(F(an)(X))
things are somewhat encoded.
43

44 LECTURE 8. EQUATIONALLY DEFINED CLASSES (10/2)

QUESTION. One is tempted to try to characterize the general class
(18) X C((A,n),&)-Alg Birkhoft’s Thm.
or in a different setting

X
UJ' Beck’s Thm.
Sets

What can you say of U or C that would be a statement neccesary and
sufficient for the class X to be a variety?

Historically first Birkhoft’s theorem provided an answer in the lan-
guage of H S P-classes. The other question was answered by Jon Beck
in the early sixties. We will see that Beck’s theorem provides a simpler
and cleaner way of stating the problem above. In order to formulate
Birkhoff’s theorem we need to define before what are subalgebras, quo-
tient algebras, congruence algebras and HSP classes. Let us proceed
in this order.

SUBALGEBRAS. Fix (A;n),& and let V = ((A,n),E)-Alg. Let A be
an algebra from V. What does it take for X C |A| to be an element of
V?

It is worthwhile to see in parallel both pictures to see what is going
on in each level: A-Alg and Sets.

) X
Sets L

Let state first an elementary observation:

PROPOSITION 3. The following statements are equivalent:

1. A subset X C |A] “is” (the underlying set of) an element of
V, and the inclusion X - |A| the underlying functor for a
homomorphism X— A of V.

2. Forallw € A, for all n(w) == X, the effect w(jox) € X (C |A])

i.e. subset X is closed in |A| under all the operations w from A.

LECTURE 8. EQUATIONALLY DEFINED CLASSES (10/2) 45

PROOF. (1) = (2): j is the underlying functor 7 = | f| of a homo-
morphism f: B—A, then inspect

n(w)
jn(w)

/]

X= B A
to see that the desired conclusion is valid.

Conversely ((2) = (1)): Suppose (2) happens. The equation w(j o
z) = j(?7) has unique solution, so it is 7 = w(z). (in fact this is just
to say: declare the operation in the subspace to be the same as in
the bigger space, because it does what I want it to do). So making
a (A, n)-algebra out of X such that j “becomes” a homomorphism is
easy.

But, why do equations from & hold there? Let’s see: If B S,
are two A-algebras and f is a homomorphism, and if |f] is 1-1, then,
whenever (e, e3) is an equation C satisfies, then B will satisfy it too!
see the diagram:

|fI*

|BI* C*

(e1)B| |(e2)B (e1)o

1-1
|f]
Whichever way I commute the switch (Whichever path I choose at the

fork) I get the commutative square. So we have

|flo(er)B =|f|o(e2)B

Now applying this maps to b € |B| and using that |f| is 1-1 we can
easily check that (e1)p = (e2)5. O

|B]

Cl

|X| is an S-class in (A,n)-Alg if it is “closed under the formation of
subalgebras”. For example, abelian groups is a S-subclass of groups.

QUOTIENT ALGEBRAS. If B s ¢ are two A-algebras and f is a
homomorphism, and if | f| is onto, then, whenever (ey, e3) is an equation

46 LECTURE 8. EQUATIONALLY DEFINED CLASSES (10/2)

C satisfies, then B will satisfy it too! The proof is basically the same
as before:

|fI*

|BI* 1"

(e1)B (e2)c

I(ez)B (el)c‘

onto

/]

If | f] is onto, then |f|* is onto (by the Axiom of Choice), so

|B]

C]

(er)co |f* = |flo(e)s = |flo(e2)B = (e2)c o |fIF

so now apply to o in both sides. (The same law of “cancellation”
|f|¥ o o = id that holds in the previous case, holds here in the ‘other’
side).

So we can ask here: Given B a ((A,n),&)-algebra, X a set, and
f : |B|—X onto in Sets, when there exists a ((A,n), E)-algebra C
such that UA(C) = X and f homomorphism?

% B / C
| | IWhen?
Sets i +t L
onto
| B 7] X (=1C))

PROPOSITION 4. The following statements are equivalent:

1. There exists a unique algebra substructure C' “on X” (|C]| = X)
such that p = |f| for some (unique) f : B—C'.

2. X =45 {(b1,02) € |B| x |B|: p(by1) = p(b2)} is a subalgebra of
B x B.

DISGRESSION. If X and Y are two (A, n)-algebras, we may take | X| x
Y| and try to impose a (A, n)-algebra structure on it. Optimistically

LECTURE 8. EQUATIONALLY DEFINED CLASSES (10/2) 47

hoping that the projection functions

[X x Y]

N

turns out to be homomorphisms of (A, n)—algebras, le. givenw € A
(arity n(w)) and a tuple n(w) — |X| x |Y], seek w(z) € | X| x |Y| such
that w(z)x = w(zx) and w(z)y = w(zy), i.e.

(1X] = [y [

X [X x Y] Y|

Pry
Pryx
X Y]

The specification of the nature of the problem is the solution ot it!:

p=(zie)
— [ov (g, 18])
so w(z) = (w(zi)ys),w(yi)is)
A family of maps {f,} is jointly 1-1 if
Yoy, zo[Vafa(z1) = folz1)] = 21 = 22

Note that projections are jointly 1-1.
Next class: the construction of p.

LECTURE 9

Congruence relations and quotient algebras (10/7)

Congruence relations. Let us review congruence relations in the
category Sets. Given sets A, B and a function f: A— B, a congruence
relation of f is the set

=;={(z1,22) EAXA: f(z1) = f(z)} CAX A

It follows immediately that it is (as a subset of A X A, as a binary
relation on A) a reflexive, symmetric and transitive (RST) relation on
A.

Conversely, given a RST relation £ on A, there is a map f: A—7
with £ = =; (Just define f: A—P(A) with f(a) ={z € A: (a,2) €
E}. cf. Halmos).

Let us phrase the above concepts in general terms. Let us start
with the concept of congruence relation:

KERNEL PAIRS. First we have two maps, 21,2, from =; to A

Notice that zy, x5 are jointly monic. Thus, we have a diagram

X1 f

Ef A
(19) x /
T

with fox; = f oxy; and whenever T and ay, ay satisfy foa; = foas,
there is a unique a : T'— =j such that a, = z,00a (o = 1,2). We say

that xq, x5 1s a kernel pair for f.
49

B

S50ECTURE 9. CONGRUENCE RELATIONS AND QUOTIENT ALGEBRAS (10/7)

We will see that we can also state the concepts ‘jointly monic’,
‘reflexivity’, ‘symmetry’” and ‘transitivity’ (JM,R,S,T) in categorical
terms, and so state the above result in terms that are totally general:

PROPOSITION 5 (in Sets). ' A pair of maps £ =3 A is a kernel
pair of some f: A—7 if and only if

(E3A):E—Ax A

is JMRST (jointly-monic, reflexive, symmetric, transitive).

So let us state what does it mean to be jointly monic, reflexive,
summetric and transitive relations in the general context. Let us try
to generalize these concepts to a general category. So assume A is an

arbitrary category, A, B objects and A s B and arrow in A.
JOINTLY MONIC. The arrows z1, x5 are jointly monic if whenever we
have the following diagram

tl 1
T E A

ty P

with x1t; = z1ty and x9t; = xotq, then t; = 1.

It is clear that a kernel pair is jointly monic: If zy¢; = x;t, and
Toty = oty as above, why does t; = t37 Because (by diagram (19))
there is a unique ¢ : T— F with 21t = x11; and x5t = zytsand hence
tl — 4 = tg.

REFLEXIVITY. Look at the diagram

L1
Eea--A--- A

T2

id| fid
1A

A
That is what reflexivity is: the existence of a map A back form A to
E, such that Vi =1,2:2;07 = x3_;.
Again, it is easy to see that a kernel pair is reflexive.

)

SYMMETRY. This should mean that the process of flipping elements in
A does not matter. We just have to get a free-element way of describing

!The ‘if’ part of this proposition does no hold in an arbitrary category (one
reason: kernel pairs could not exist).

LECTURE 9. CONGRUENCE RELATIONS AND QUOTIENT ALGEBRAS (10/71

that flip.

with 207 =25 and zo 07 = z;.
Notice again that a kernel pair is symmetric.

TRANSITIVITY. This is a little bit harder to express categorically,
because is not a map from F or A, but from something else that even
could not exist in the category. Transitivity is saying that the object
T should have this pair of maps to A

Y

factoring through F as in the following diagram (the ordered pairs
above each node are an example of how arrows operate)

(a,b,d)
T

) '/ \ (5,4)
E E

(20) gm;/ pry)pr'/ Q‘rg(;?

\1‘/

So the way to express transitivity is: the arrows x1, x5 : F— A are
transitive if for PB a pullback for the left diagram below, for all «, 8

—_

S5RECTURE 9. CONGRUENCE RELATIONS AND QUOTIENT ALGEBRAS (10/7)

there is a k that makes the diagram on the right commute.

Z1

E E E

L2

T T2

3k,

A PB
What if your category does not posses pullbacks? In that case is harder
to explain what transitivity means: You have to ask condition (20) for
all test-maps

T

I
¥

(21) PB

o g
in the upper square in the diagram (21). Fzercise: Check that kernel

pairs are transitive.
DISGRESSION.?2 A slighty different way of reformulating Transitivity
is: Given a test object T" an a pair of maps as in the diagram

P1 T

T ' A

P2 T2

let us write (to easy notation):
T10p=ay
T2 01 = Qg
L10p2 = as
Ty O P2 = Qg
(the notation is motivated by the observation that if £ C A x A and

T C E x E, the elements of T" would be 4-tuples ay, az, as, a4).
Now, for all 7', py, po

[ay = as] = Je: T—F
with z; 0c = a; and 25 0 ¢ = ay.
EXERCISE.

2This is an aside that was given at the beginning of lecture 11 a propos of a
comment about the material of this lecture. That is why we decided to include it
here

LECTURE 9. CONGRUENCE RELATIONS AND QUOTIENT ALGEBRAS (10/733

1. This reformulated version of transitivity is equivalent to the pre-
vious one.

2. Each of the notions JM, R, S, T for @, 25 := is equivalent with
its counterpart JM, R, S, T for

1 0 —
Al= BE) —= A(E)
Tg O —
if and only if
X1 0 —
VT € |A|l:A(T,E) —— AT, E)
L9 O —

is JM,R,S,T in the usual set-theoretic sense. (Hint: check first
JM and then assuming it check R,S,T).

This is one more illustration of how the Yoneda representa-
tion is used to give idealized pictures: we could simply say

Y(E) el Y(4)

is JM,R,S,T.

The A-algebra case. Let K, A be two A-algebras, and xy, 25 two
A-algebra homomorphisms. Neccesary and sufficient condition for

= U

T2

E

to be a kernel pair of some algebra homomorphism f is that

T

(22) |E| |Al,

T2

be the kernel pair of some function |A|—7? (if and only if be JMRST).

Why? Just check carefully the conditions (for each property JMRST)
on the corresponding diagrams above. For transitivity, the easiest way
to see it is to notice that congruence relations are constructed set-
theoretically.

Quotient Objects.(In general) Consider the diagram (22) and
fla) ={z € |A] : © = x5(e) where e € |[E| A z1(e) = a}

There is no reasonable way for f(a) to be a A-algebra (= {z € |A] :

dpeb:p=(a,2)})
Let

Q={se P(A]): S = f(a) Aac|A]}

SLECTURE 9. CONGRUENCE RELATIONS AND QUOTIENT ALGEBRAS (10/7)

We wish to make () a A-algebra in such a way that f becomes a
homomorphism:

A7) Q)
w w
f
|4 Q

Given w € A and n(w) g Q@ we want: For all a € |A["@), if

¢ = f(a;), then w(q) = f(w(a)). This is our dream. How can we
realize it7

If f is onto, how then to define w(q)? Fortunately there are tu-
ples a € |A|"%) with f(a;) = ¢ for each i € n(w), and (even more
fortunately) if @ and a’ are two such

flw(a)) = flw(d))
Proor. If f(a;) = ¢i and f(a}) = ¢;, that means (a;,a}) € |E|, that
is
p= (- (awal)-) € B[

z1(w(p)) = w(z1(p)) =w(---ai---) = w(a)
and
e2((p) = w(@a(p) = (- -) = (@)
So w(p) = (w(a),w(a’)) and hence f() = f(). O

This is a principle you see commonly in algebra (groups, rings,
modules, boolean algebras, etc) where we have elements like e, 0, L
etc. by which you can recover all cosets form the corresponding (e-,e-,
etc.) cosets by translation. This is not the general case as the following
simple example in lattices shows:

Take the set of functions f : R—[0,1]. Consider the operator o
(the support) o(f) = f7*((0,1]) € P(R). Here for example, [1] share
its class with all functions, but [0] = {0}.

So it is very bad preparation for general algebra to start with mod-
ules, groups, rings, in which the kernel is a subobject. Kernels are
subobjects in these categories, but this is not true in general.

LECTURE 10
Lawvere’s Theorem (10/9)

The global picture. The last two lectures we have been a preparation
for the formulation and proof of the characterization of equationally
definable classes. I am going to give you the global picture of what is
happening.

Given a A-algebra A (= |A|, (wa)wea)), and functor (between |A|
and some sets)

Z1
X A —F— Q
HS)
with p onto and 1,z JMRST, let us remark the following facts:
1. pis the coequalizer of (1, x2) if and only if (21, 2) is the kernel
pair of p.
2. There is a unique way to make ¢) a A-algebra for which “p is a
A-homomorphism”
n(w)
A" = |Q[")

-« - - —

O.n(u.))

WA wqQ
onto
14. P Q
o i A =

in the long run
— Opn(w) & O_n(w) = pwo O_n(w)

The same is true if you use w’. That is, any particular operation
has only one way to make () a A-algebra.

3. There is a unique way to make () a A-algebra for which “p is a
A-homomorphism” if and only if

x (@122 1A] % |A]
is a “subalgebra”.
55

56 LECTURE 10. LAWVERE’S THEOREM (10/9)

4. If both sides of (3) hold, then (1) is equally true at the level of
A-algebras.
5. In particular, reading off parts of (1)-(4),

T

X A

L2
in A-Alg is a kernel pair if and only if

|21

| X] Al

|2

is a kernel pair of some function if and only if z, x5 is JMRST.
6. An arbitrary A-algebra homomorphism A — @ (not necessarily
surjective) is a coequalizer in A-Alg if and only if [p| is onto.

REMARK 3. (5) and (6) (in this context perhaps) is what Emmy
Noether saw as her first isomorphism theorem, in fact, (5) and (6)
captures the heart of the FIT.

Backtracking over these six points: what if we have equations, i.e.
we are in (A, £)-Alg instead of A-Alg? The answer is that everything
works the same way, because every equation holds in the quotient class
(some good reason missed here...) So we have the last remark:

7. For (A, £)-Alg the situation is no different.

Now our goal is the following: In the diagram below, we have a
functor Fa(—) with nice properties (recall lecture 7). We would like to
do the same thing in the upper part of the diagram

(A, €)-Alg

Fe(—)! |Us ‘forget’ the equations

1
!
1
1

A-Alg

Fa(=)| [Ua ‘forget’ the operations

4

Sets

i.e. a functor Fg(—) having the property

(A, E)-Alg(Fe(A),—) = A-Alg(A,Usg(—)) = U ()

LECTURE 10. LAWVERE’S THEOREM (10/9) 57

(for the last = recall (UA)k(—) = Sets(k,Ua(—))). How can we define
Fe(A)? For each e = (e1,¢€3) € €,
€1)4

(€2) A4

you want them to be equal,

AP —Zs 4] x |A] (= |A x A))

and U.ce e(|A[™™) C |A| x |A| hence is a set. Let F be all RST
subalgebras of A x A containing E. Let £ C X = NJF. So define
Fe(A) as this X.

How to see that this will work?

(&) A
A-homo
(e1,€2) T (a(A,€&)-alg.)

Whatever A-homomorphisms collapses together, it is guaranteed that
it will collpases together ey, €5 too.

A A-hom

3!

Fe(A)=A/X
It is the same construction you do in abelian groups, etc.

All ingredients are available to say two of the three formulation or
characterizations of equational definable classes:

(2) Lawvere’s characterization of equationally definable classes of
algebras as categories with explicit functors to Sets.

(1) Birkhoff’s HSP variety theorem.

(3) Historically the last, but the most general is Beck’s theorem for
varieties (over Sets; over anything).

Lawvere’s Theorem.

THEOREM 2 (Lawvere). A category A along with a functor U :
A—Sets is “essentially” a variety (equationally definable class) of
algebras if and only if

58 LECTURE 10. LAWVERE’S THEOREM (10/9)

1. Each U*(—) is representable (for all k € |Sets|). (A has all
“free” objects).

2. A has coequalizers and kernel pairs (of pretty much arbitrary
single maps in A).

3. (FIT)
(a) A map p: A—Q in A is a coequalizer (in A) if and only
if
U(p)—U(Q)
is onto.

(b) A pair of maps in A

Z1

X A

L2
is a kernel pair of maps in A if

(X @:UA)

U($2>
is a JMRST pair of functors.

There is a partial lie here: it is in “essentially” and “equationally
definable class” (here refers to sets).
A MORE GENERAL CONCEPT OF VARIETY. Let us consider the cate-
gory (A, E)-Alg, where A-ary class or operations (n(w) a set, w € A),
& still a class of equations.

The requirement to be a variety is that

(A7 g)—.A]g

A

U| ' free functor F'
Sets

have a free functor with F(k) representing U*(—).
Now, there are slightly more varieties. An example to convince (at
least...) topologists:

KTs

LECTURE 10. LAWVERE’S THEOREM (10/9) 59

where K75 is the category of compact T3 spaces and continuous maps,
U is the underlying point set functor, and the Stone-Cech compact-
ification (for discrete spaces).

Recall that U*(A) = Sets(k,U(A)) and consider:

k— U(A) 4

Icont.
ﬂdisc

Now take the smallest closest space....etc. As to (FIT), (a) and (b),
...COMPLETE THIS PART

So the theorem says that those topological spaces can be defined by
operations and equations! What are these operations and equations?
We will find out in the proof of Lawvere’s theorem:.

kdisc

PROOF. (of Lawvere’s theorem, idea) For the < we have seen
enough ...

In the other direction, (1),(2) and (3) implies that there is a variety
on A. Let A be all possible natural transformations U*—=U., for all
possible k. It is better to organize them, so let us define the following
category Op:

|Ou| = |Sets|
Ou(l,n) = nat(U", U")

(here |Sets| plays the rol of the arity of the operations). There is a nice
functor

Sets Oy
I Lsn 5 Uf=—0of

i.e. given an object A, define the map from U™(A)—U'(A) as follows:
take an element of U(A) (a map n — U(A)) and compose it in the
required form to get an element of U' (a o f is an [-tuple).

Now, Oy contains all we want (U"—U goes to Op(1,n)). O

Let us read for compact-T; spaces (i.e. in the category HK) what
we have so far: nat(U*, U) are the k-ary operations on HK. By Yoneda,
it is isomorphic to U(F(k)). Ohl, ultrafilters on k. Take an ultrafilter

u e U(B(k))

60 LECTURE 10. LAWVERE’S THEOREM (10/9)

Some people would use the notation

(a)(u) =lima; € A
@)

others, the presentation

ue Bk

a kdisc

b4
A a

So surprisingly Lawvere’s theorem gives an equational presentation of
compact T3 spaces.

LECTURE 11
Beck’s Theorem (10/14)

We need some definitions in order to state Beck’s theorem.
SPLIT COEQUALIZERS. Take three objects and arrows as in

Zy

(23) AT 5 A
To g

satisfying

(24) DTy = Py

(25) po = idyn

(26) 16 = idy

(27) T90 = op

This four equations about the five maps in (23) defines a split coequal-
wzer situation.

Some remarks: We wish p to be the equivalent in sets of being onto,
that is why equation (24) is there. Also we want o to be a kind of cross
section for p, that is if A" and A” were sets, o is very much like choosing
representatives of the partitions that defines p~!. This is what equation
(25) refers to. We also wish to say that § is something that in Sets
would mean 6(a) = (a,0(p(a))), and this is the content of equations

(26) and (27).

LEMMA 1. Given a split coequalizer situation as in (23), p is in
fact a coequalizer for (z1,x2).

PRrROOF. Given map ¢ as in the diagram satisfying tz; = taq,

A/ xl A = _p_ — AII
T2 o
t ~

61

62 LECTURE 11. BECK’S THEOREM (10/14)

we must show that there is exactly one (3') z such that zop =t. So
we have to show:
a) 321 try z = t o 0. Indeed,
zop=(too)op=to(oop)
=to(z209)
=(toxzz)0d
=(tozy)o0d
=to(z;00)
=toidy =1
b) 3 If zop =t and Zop =t we have
zoidgn =zopoo=tooc=Zopoo=zoidunr

O

So, a split coequalizer situation gives a very ‘algebraic’ coequalizer.
This does not happen in general (e.g. in groups). In the diagram

E Z Z/(2)

where F ={(z,y) € Z X Z : y — x € 27}, there is no way of getting a
map (a group homomorphism) o : Z/(2)—Z such that equation (25)
holds. To be a coequalizer in general is for more ‘fluid’ reasons that for
‘algebraic’ reasons.

Let us see what happens in Sets. Consider the diagram

T p

With the help of AC (axiom of choice) you can create a map A «+— A”.
Hence we can get a pair of maps idg,0 0p : A— A that come from
one particular map p.

So, every time xj,z3 : A == A is a congruence relation in Sets
and p is a coequalizer in Sets, then the whole picture fits in a “split
coequalizer situation”.

LEMMA 2. If

@&
A S R AV

T2

LECTURE 11. BECK’S THEOREM (10/14) 63

is capable of fitting in a split coequalizer situation (in some category
A), then every functor F' from A to (a category) B winds up having

(A % p(ay 20, pan

a coequalizer also (in fact split using F (o) and F(§) where o and 6 are
splitting data for the original ((z1,2),p).

A module theorist would say: The roots of homology theory are
the failure of functors hom and to preserve coequalizers. (In fact,
homology theory is the measurement of how coequalizers are preserved
by some functors).

EXAMPLE. Consider in the category of groups
@

7 p
Y

It is not a split coequalizer (as we indicated), but down, at the level of
underlying sets we have o, ¢ such that

{(z,y) EZ XZ:y—x €2}

Z/(2)

]

H(z,y) EZXZ:y—x €2L} «-§ - |Z|% |Z/(2)]
|y g

is a split coequalizer situation.
One of the miracles of algebra is

SPLIT COEQUALIZERS IN ALGEBRAS. Let (A,€&)-Alg be our focus.
Suppose

T1

Al A

T2

is a pair of maps in (A, £)-Alg for which there is @, p, 0, § making

[/Y(L’L’l) P
(28) U(A) s - UA) ———Q
(](CEQ) g

a split coequalizer situation in Sets.

PROPOSITION 6. In the situation described above, there is a way
and only one way to put an algebra structure on () rendering p (see the
diagram below) a A-homomorphism

B "o
:Ll p

A

Al

(Qv (w)weA>

T2

64 LECTURE 11. BECK’S THEOREM (10/14)

in that A-Alg @), equations £ are valid, and p is then a coequalizer of
(z1,29) in (A,E)-Alg.

PROOF. For each w € A consider the diagram defining the opera-
tions w on Q):

(le)n(w) pn(w)
nyn(w) il n(w) n(w)
(U(A))" a5~ (U(A)™ [nwy - @
(UxQ)n(w)
(29) w w w
UIl P
U(A) «----§----- UA) ., Q@
U$2

Define w = pow o o™*). We see from the commutativity of the squares
and from the hypothesis relatives to equation (28), that p is in fact a
homomorphism, and in fact is the only way to put an algebra structure
on @) with the required properties.

Also, p is homomorphism and onto, hence the equations £ are valid
(as we saw in lecture 8). The last thing is to check ‘p is then a coequal-
izer of (z1,x3)". Let us consider the diagram with t 2 = ¢z,

T

/
Z1

(@, (w))

A/

Lo p

We have at the level of Sets U(A) M, |7'| in diagram (28). Hence we
have in Sets a map f that makes the diagram below commute

7|
" 'f
U(A) ——@Q
Does f work at the right level? Just check
o " i)
w w
f

LECTURE 11. BECK’S THEOREM (10/14) 65

fow= fowop"¥ o g™
= fopowo o™«
= |tjowo sigma™)
= wr o tM¥) o g™
= wp o [
O

Moral: algebra homomorphisms are just nicely behaved functions, not
functions with something added!
One more definition in order to state Beck’s theorem.

DEFINITION 7. Say

T1
A A
L2
in A is U-split if there is p, 0,0 in Sets such that
U(wl) p
UA) «-§ - UA) === U(A")
U(.CUQ) g

is a split coequalizer situation.
Finally we arrived to

THEOREM 3 (Beck). Given category A and U : A—Sets, A (and
U) is (are) a variety (and its underlying set functor) if and only if
1. Each U* is representable.
2. (a) For all pair of maps
L1

Al——=A inA,

1)

A has a coequalizer for x1,x;.

(b) For all U-split

L1
/ .
A—/=A inA
o)

with coequalizer A 2+ A" in A,

U % v(a) 2@, yan

is a coequalizer diagram in Sets.

66 LECTURE 11. BECK’S THEOREM (10/14)

(c) For all U-split

a1
Al—=A inA,
)
for all p : A—Q, if U(p) = coeq(Uzy,Uz;), then p =
coeq(zy, T3).

Conditions (a), (b) and (c) seems very similar. Let us state the
slogans behind them:
(a) A has coequalizers for U-split pairs.
(b) U preserves coequalizers of U-split pairs (i.e. if p is a coequalizer
in A, then U(p) is a coequalizer in Sets).
(c) U ‘reflects’ coequalizers of U-split pairs (i.e. if p is a coequalizer
in Sets, then it already was a coequalizer in A).
There is no simple way of translating this conditions to the ones in
Lawvere’s theorem, so will give an independent proof.

REMARK 4. The marvelous thing about this theorem is that you
could simple change once again the definition of variety, by replacing
Sets by any other base category.

LECTURE 12
Adjoint Functors (10/16)

Today we are going to prove Lawvere’s theorem. It is worth being
prepared —just in case we need it— with some machinery.

Adjoint Functors. For each k € Sets, hte representabiliy of each
functor

Uk : (A, E)-Alg—s Sets

amounts to the availability, for each k € |Sets|, of a (A, E)-algebra
Fa(k) such that

Y (Fa(k)) = U*
that is,
(A, €)-Alg(Fa(k),—) = U*(-)
or in other words, for all A4 € |(A, £)-Alg],
A-Alg(Fa(k), A) = Sets(k, U(A))
In fact, these isomorphisms are also natural in the & € Sets variable.
LEMMA 3. Suppose A —— B is a functor such that for each A, A’ €
A we have the bijection
A(A', A) 107_;» B(Y A, Y A)

(in words: Y is “full and faithful” —also “fully faithful”). Then, given
a functor

X8
for which it just so happens that, for each X € |X| one can choose an

Ax € |A| and an isomorphism Y (Ax) = T(X), the given choices thus
made can (in one and only one way) be “factored up” into a functor

. x—A
67

68 LECTURE 12. ADJOINT FUNCTORS (10/16)

(with F(X) = Ax for all X € |X|) whose composition Y o F with Y
is naturally isomorphic (via the chosen isomorphisms) to T (see the
diagram below).

T

X B

A

This is the natural counterpart of the situation intopological
spaces, where from S =2 X we lift to

(S,TX S)g(X,T)

The above statement says no more than this.

PRrROOF. The construction of F: Given ¢ : X—Y, we need to
define Ay ﬂ Ay. We know

viax) T2 yay)
T(X) g~ 1Y)

So, going down-right-up, we have a map Y F(§) : Y(Ax)—Y(Ay).
Now, how to get one from Ax— Ay 7 Simply using the bijection

1-1
A(Ax, Ay) —— B(YAx,Y Ay)
onto
Y F' is naturally isomorphic to T: Given X 44 ¥ -4 7 we have the
diagram

Y(AX) Ef(_f). Y(AY) ﬂ). Y(AZ)

o 2 o

T(X)WT(Y) T T(7)

we would like to understand is whether Y (F () o F(€)) =
The other half of the battle: Why is F' a functor? Y F' is a functor,
so

YE(Cof) =YF(()oYF() =Y(F(¢)o F(£))

LECTURE 12. ADJOINT FUNCTORS (10/16) 69

hence ‘canceling’ Y (because faithfulness) we get

F(Co&) = F(()o F(§)
Finally, F'(id) = id is much easier (use just faithfulness). O
What good is that?
The passage from the functor k ++ U* in

k— U"
Sets ~ (SetsA)Op

F Y (cov. Yoneda)

A

to the functor F', k — Fa(k) is just a particular case of a more general
construction (cf. definition 8).

Let us reformulate again the conclusion of lemma 3 in a more gen-
eral form:

Given W C |X|, assume the hypothesis of lemma 3. Then, given a
functor

x 5B
for which it just so happens that, for each X € W C |X| one can
choose an Ax € |A| and an isomorphism Y (Ax) = T(X), the given
choices thus made can (in one and only one way) be “factored up” into
a functor
F:Wx—A

((W)x meaning the category with object-class W and hom(X,Y) =
X(X,Y), or in other words, the full subcategory of X with object
class W C |X|) with F(X) = Ay for all X € |X|, whose composition
Y o F with Y is naturally isomorphic (via the chosen isomorphisms) to
Tlowy.e-

The proof is the same (just be careful to choose objects from W).

It is this result that Albrecht Dold was looking at with his concept
of super-naturality.

DEFINITION 8. Given functors
U

F

(30) A X

such that
(31) AFX,A) =2 X(X,UA)

70 LECTURE 12. ADJOINT FUNCTORS (10/16)

is 1-1, onto and natural in both variables X € |X| and A € |A|, then
F is called the right' adjoint to U, and U is called the left adjoint to
F.

Small remark: operator theory doesn’t quite apply here: we could
have a situation F'— U — G with F,U and U, G adjoints, but F' and G

with almost nothing in common.
EXAMPLES.
1. Let A = (A,€)-Alg and X = Sets. Then F = F5¢) and
U = U is an adjoint pair of functors (an e.p. ...)
2. Define F' = (3 (the Stone-Cech compactification) and U = “forget
the topology”. Then

U
KTy —— Sets
B

is a pair of adjoint functors.
3. Consider Think of A as (algebras satisfying £)a- 4j,, define F' =“introduce
as needed egs. from £”7. Then

U
(A, E)-Alg ?: A-Alg

is a pair of adjoint functors.

Let us consider two important particular cases of equation (31),
(1) The case when A = F X (for some X € X'); we have

AFX,FX) =2 X(X,UFX)
idpx -------- - X
Here we get, using the bijection, a map

(32) X —X Urx

which is called the front adjunction (unit) to the adjointness (30).
(2) The case when X = UA:

AFUA,A) = X(UA,UA)
g 9onmen 2m idya

Again, using the bijection, we get a map

€A

(33) FUA A
which is called the back adjunction (counit) to the adjointness (30).

Mnemonic device: ‘right’ (‘left’) is meant to be which is to the right (left) of
the comma.

LECTURE 12. ADJOINT FUNCTORS (10/16) 71

EXERCISE. The maps in equations (32) and (33) are natural trans-
formations. (There are two ways of proving it. (1) The intrincate:
reprove Yoneda lemma in a particular case ... (2) Sophisticated proof:
Yoneda is working behind this, take the identity, find the functor that
is working here, etc.)

This is the approach that leads to monads. But let us came back to
prove now —with this machinery— Lawvere’s Theorem (see lecture 10).

PROOF. [Lawvere’s Theorem|? If U : X —sSets has a left adjoint
F,if X has a kernel pair (congruence relations of X-isomorphisms) and
coequalizers (of arbitrary pairs ... “difference kernels”), and

1. FIT) An X-isomorphism p is a coequalizer if and only if U, is
onto.
2. FIT, A pair of X-isomorphisms (x1, z5) constitutes a kernel pair
if (by the way: and only if) (U,,,U,,) do.
Then X “looks just like” the (A, £)-Alg category built up from A =
Urefsets| nat(U*, U) x {k} and € (to be made precise in the case of the
proof). Let Oy be the category defined as

|Oy| = |Sets|
Ou(n, k) = nat(U*, U™)

and as composition the usual composition of natural transformations.
There is a functor ¢

@U /Y}
n -5k - - p(n) 2 o(k)

where a “migrates” as follows:

n Yo(k) n o(n)
of ~ ol el a o o
k Ur Up(k) o(k)

Also there is a functor 6 (that maps sets to sets)

Sets Oy
n L5k ---» —o f(or UY)

2See section 4 in F.E.J. Linton, Some Aspects of Equational Categories.

72 LECTURE 12. ADJOINT FUNCTORS (10/16)

so we have the following picture:

O

% \%_\~

F

Sets = X
U

It is not difficult to check that F' at the level of objects and arrows is
the composition of the two previous functors we defined.
Now, Oy is in the middle ... so, let us redefine it directly:

|Full image of F| = |Sets|
{Full image of F}(n,k)=X(F(n), F(k))
It is easy to see that this is a category and recalling the proof of this
we can check that it is precisely Oy. Hence we have two different ways

of defining it!
So we arrived at the following situation:

o "
X oo - Op-Alg — Sets©v)
(34)

Sets ——— Sets®t™
Y

Given X € A&, consider UX. How this can be a U-algebra 7 Let
A € nat(U*,U), and take
Ax (UX)F—UX
Next thing to do: how this passage from X to Ax manifest as a

functor. The rest of the proof is now FIT; and FIT5; makes ® an
equivalence of categories, and hence makes X' an algebra. O

LECTURE 13
Proof of Lawvere’s Theorem (10/21)

It came up several times unofficially: maybe is time to introduce it
officially (it will be needed in the proof of Lawvere’s Theorem).

PULLBACKS. Given (in any category) 3 objects and 2 maps

A

by a pullback for this diagram is meant an object P and two maps

P—= 4
Yy
B
for which
l. fox=goy

2. For all pair of maps T - Aand T B satisfying foa = gob,
there is a unique 7' -2+ P solving the equations

Top=a

yop==a
73

74 LECTURE 13. PROOF OF LAWVERE’S THM.

All the information in one diagram looks as follows:

C

P is an object we are seeking to characterize from the information
of diagram (35) as

(36)
A(T, P) = {(a,b) € A(T,A) x A(T,B): foa=gob}
We seek P € |A| with Y(P) € Sets*” isomorphic to (36).
Pullback —— A(T, A)

fo-

AT, B) —— A(T,C)

This is the set-theoretic version. In general, we ask “find me someone
2

which job-description matches ... If we found one, as a corollary of the
Yoneda Lemma it will satisfy the requirements.

Proof of Lawvere’s Theorem (continued). Recall the diagram
(34)at the end of last lecture.

Let us study in more detail the category Oy. The objects of Oy-Alg
are pairs (A, a) such that

(37) Y(A)=ao¥

This seems a little formalistic, but we will come back in a moment.
Maps from (A, a) to (B, b) are pairs A — B such that Y(f) = aof.
What does it mean to have a contravariant functor a : @ —&ets? For

LECTURE 13. PROOF OF LAWVERE’S THM. 75

each n, k
(38)
. n — a(n) 4
E w Ta(w) i
w o w’: k — a(k) :n(w ow') = a(w) o a(w’)
s G
' l = a(l) !

What is the statement (37)?7 The object-level interpretation of Y(A) =
ao @ is simply: a(n) = A". So we have diagram (38) with a(z) replaced
by A, for i = n,k,{. The mapping-level interpretation of Y (f) = a0
says: let f: n—k (in Sets); if we ask what a((f)) is doing, a(6(f)) =
— o f. Why? Let us explain me Y (f) = « 0§ a little bit more first:

MIiINI LEMMA. If
(f,a): (A, a)—(B,b)
(g,a) : (A, a)—(B,b)
then f = g and o, = — o f.

PROOF. If we establish a,, = — o f, then f = ¢ follows. So let us
prove this statement. Take o : a—b, hence «, : a(n)—b(n). But
a(n) = Y(A)(n) = A" (similarly for b(n)). Hence

ap=(a0l)n =Y (f))n=—0f
O

So the question is that f is more natural than what you can expect.
Now, back to the diagram

f?’L

a(n) = A" B
a(f) a(w)|—o f a(w)
a — k k
(k) A 7 B

The commutativity of this diagram is just the requirement that a is a
natural transformation.

Mapping level interpretation of (f,a) : (A,a)— (B, b).

I want to make it clear why Op-Alg calls itself algebra. ©-Alg is a
(A, E)-Alg where A =J, O(1,n) x {n}.

76 LECTURE 13. PROOF OF LAWVERE’S THM.

For w € O(n,k) and a(w) : A¥— A™ we can write in a very alge-
braic notation

a(w)(n) =gef a *w

and we have the equations

(39) axidy = a
(10) ard(f) = aof
(41) ax(wow') = (a*w)*w

Equation (39) comes from a(id;) = id4(k). Equation (40) is aff =
— o f, and finally (41) comes from a(w’ o w) = (a(w) o a(w))(a) =
a(w)(a(w')(a)). This are the set of equations &.

Now, given X, U, F', how to concret a ® : ¥ —Oy-Alg 7 If we consider
the diagram

Oy-Alg — Sets®”

Sets —— Sets ™
Y

where the maps acts as follows

X(p(0(-)), X) = X(F(-), X)
U(X) — Sets(—,UX)

Now, the fact that F and U are adjoints tells us ‘essentially’ the equality
X(F(-),X) = Sets(—,UX) in the lower right corner. (Warning: F
and U adjoints does not tell you this is an equality. We have to use
additionally the definition of Oy in order to get it!). Hence, we have a
pullback, Oy-Alg and the semantical comparison functor ®.

LECTURE 13. PROOF OF LAWVERE’S THM. 7

Under certain circumstances, ® has a left adjoint ®

X @U—A]g

Also a left adjoint Fg to Ug : Opy-Alg—Sets. The only thing we know
going from Sets to Sets being fatten enough to be able to work as a
left adjoint to U is Let us construct it. Consider

Sets

(42) Ou-Alg — Sets®7

Ue

Sets — Sets®et™

Now, check that
Sets(—,UFA) = X(F(-),FA)
= Oy(—,A)
= Ou(0(-),4)

or simply

0 Y op
Sets Oy Sets®u

Hence Fp is a pullback in diagram (42).
FEzercise: Fy is a left adjoint to Ug (hint: all the ingredients are on the

table ..)

If and object of Opy-Alg has the form Fg(A), then
(43) X(B(Fo(A), X) = Op-Alg(Fo(A), (X))
(44) =~ Sets(A, Ug®(X))

(45) = Sets(A,UX)
(46)

Remarks: Isomorphism (43) is natural in X, the line (44) is because
Fo,Ug are adjoints, and (45) is due to the fact Uo® = U.

We can say: to the extend we can at least find values for F'(A), we
have at least a partial left adjoint. Now, how can we extend this from

78 LECTURE 13. PROOF OF LAWVERE’S THM.

the algebra F'(A) to all algebras in Op-Alg 7 Observing that Oy-Alg
is a quotient by a decent relation.
A € |0y-Alg|, Fo(Us(A) — A which at the level of objects is

surjective.

Fo(UE) E—= Fo(Us(A) —— A
® has left adjoint ® if X has coequalizers’.

Historical comment: Looking at the adjoints

Fg
Sets —— Oy-Alg
Us
and
FoU : Sets—>Sets
one 1s puzzled by the question: Why did Lawvere didn’t discover monads? Perhaps
he knew Eilenberg- .. was working with them, that Perhaps he prefered to
concentrate in the category Op-.Alg leaving the surrounding work to other people

LECTURE 14
Continuation of the proof (10/23)

We have
X - @U—A]g
[0)
U Fol (U
Sets —=— Sets

where |Oy| = Sets and for the maps we have many choices

1. nat(U*,U™)

2. X(F(n), F(k))

Ou(n, k) = < 3. Sets(n, UF (k))

4. Sets(n,nat(U*, U))

5. UM F(k))

all of which are the same: 1 and 4 are the same: (U")x = (Ux)". The
adjointness between F' and U gives the equivalence between 2 and 3.
For 1 and 5, observe that U* is representable and represented by F(k)
(Yoneda Lemma). The equality of 3 and 6 is by definition of what
is U™. Finally 3 and 4 follows from Yoneda Lemma (represented by

F(k)). This is the description of the category Oy-Alg.
Now let us see the functor ® : X —0Oy-Alg,

O(X) = (UX {(UX)" =% (UX)"}uea)

where UF = U and A is defined as all posible
The

algebraic language nat. transf. language
a*w = wx (a)

For X - Y, U(€) : &(X)—®(Y) is a homomorphism because
fo(a*xw)=(£oa)xw

79

80 LECTURE 14. CONTINUATION OF THE PROOF (10/23)

(This is the reason why many algebraists, f ex. Jacobson, prefer to
write function in one side and operations on the other).

SOME MOTIVATION FOR THE LEFT ADJOINT ®.

PROPOSITION 7. 1. Every functor that is a left adjoint pre-
serves coequalizers (much more too ...)

2. Every functor that is a right adjoint preserves kernel-pairs (prod-
ucts, pullbacks, in general limits —we will see it later—, but this
is what we need now),

Observe

X(F,,X) = Sets(n,UX)
= Sets(n, Us(®(X)))

Using left adjoint Fj
= Oy-Alg(Fy(n), (X))

For what? Morphisms X'(7, X) looks like last line above. If there were
a left adjoint to ®(X) we would have

= X(9(Fy(n)), X)
So, for values ®(Fy(n)) we use F(n).

PRrROOF. (1) Take a pair of maps

A/ - A p = COGq(lL’,y) A//
Yy

Applying the functor F', we get

'z
Fy

F
FA—-P par

FA

We want to check Fp is a coequalizer. Given t : FA—T with Fz =
t o Fly, find matching f : A—UT. Tt is easy to check tz = fy. So,
by hypothesis we have f factors! through A”, that is, 3w with ¢p = {.
But then go Fp =t.

LECTURE 14. CONTINUATION OF THE PROOF (10/23) 81

(2) works essentially in the same way.

x
A’ A / A"
A
: G
P S
Dot b
FE
Uz
UA UA vs UA"
YUy g
B 0.
P
;o
E

Given a,b with Uf oa = U f o b, the compositional requirement
Tp=a yp = b

translate in

(47) UVep=a Uyp=1>

So there is p with (47). O

Known how ® needs to treat the Fy(n)’s and knowing that it is a left
adjoint, ® will have to preserve coequalizers. We will know how to

define

. b d(x
b(ooeq(Filr) =t Fo(k))) = coeq(F(n) = F(k))
y P(y)

So, why can every Op-algebra be expressed in this way? Take A €
Op-Alg. For each natural transformation U*¥ — U™ we have

— %W

|Al*

|Al"
Now,

€4

Fy(]A]) ” A
A —= |A| = Uy(A)

82 LECTURE 14. CONTINUATION OF THE PROOF (10/23)
This function at the level of sets is “very surjective”

4| Us(ea)

id) 4|, or better U(ida)

This can be done no matter what algebra you are looking at. So take

€A

A

(48) Fy(|Eal)

What is the coequalizer of a,b? It is £4. The diagramatic-style proof
is: Given test maps t with ta = tb, i.e. txcg, = tyep,

T
/A:
Fe(IEAI)Z::Fe(IAD Z

Use heavily

DEFINITION 9. (if we can (!) coequalizerls had better ezists in
X)
@(A) = COGqX((I)<(E o €EA)? (D(y © 5EA))

Recall () that every time you have an adjoint, you have a back
adjunction

(49) d(DX) b x
and also, a front adjunction
(50) A d(dA)

The next trick is to see that the three ingredients in FIT make each
(49) and (50) an isomorphism.

LECTURE 15
(10/28)

Leftover from last time: if an adjoint pair is given, and

0]
X - Op-Alg

)

U Fy

a4 Usg
Sets
is formed “as usual”, with left adjoint Fj for Uy, then
do = Fg

(Last clase we couldn’t see the proof, that was at the other side of the
window ... we just needed to unravel the shade ...)
Recall the functor Uy was defined by

GU—AIg—>Sets®fofp restt: Sets®et” Y, Sets
We have to remember how we constructed Fjp; First

(51) O(F(n)){k} = U*(F(n))

(this is essentially how the passage from X to Sets®v works). On the
other hand,

(52) Fy(n)(k) = Ou(k,n)

Now, Op(k,n) had at least 5 different expressions, one is nat(U™, U¥),
and by Yoneda it is isomorphic to UX(F(N)). So, by equations (51)
and (52), at the level of objects, the functors ®(F(n)){k} and Fy(n)(k)
are the same.
Fzercise: Check the map-level.

This help explaining why @ at the level of free algebras is a perfect
inverse of @ all the time. So we could perhaps form

G = {0y-Alg : X("®(A)", —) = Op-Alg(A, ®(—))}
83

84 LECTURE 15. (10/28)

i.e., G are those Op-algebras for which the functor
Op-Alg(A, ¢(—)) : ¥—Sets

is representable by an object “p” in X. We can say that at least for
the elements of G we have ® is adjoint to ®, and the supernaturality
lemma tells us that the extension

(I) . <Q>@U—>X

What we know at this point is that G contains all the free Op-algebras.
Now, since every Opy-Alg is a coequalizer of some pair of maps between
free algebras, Opy-Alg C G if X' has coequalizers (actually is enough
to have “enough coequalizers”) and the reason is that ® must preserve
coequalizers.

Standing assumption for today from now on:

1. U has a left adjoint F)

2. X has coequalizers (this assumes @ is “everywhere defined”)

3. U(z) is epi = z is coequalizer

4. U(xz) is epi <= z is coequalizer

5. X has kernel pairs
Recall a general functor 7' : A—B is faithful if each function

Taa: A(A,AYV—B(TA,TA) is1-1

Why we rise this? Because U is going to be faithful iff ® is faithful,
and the proof is somehow given by the fact that Yoneda is faithful.

CLAIM. Up is always faithful (Why?: because of definition of algebras).
And so, ® is faithful = U o @ is faithful = U is faithful.
Conversely, U is faithful, then ® is faithful.

PROOF. (of claim) Remembering that U(z) is a coequalizer (in &ts,
i.e. onto) iff z itself is a coequalizer in X, let us show that U is faithful.

Take

a
X Y
b
and assume that Ua = Ub in
Ua
UX Uy
Ub
and prove a = b. Consider
a
FUX X . x Y

LECTURE 15. (10/28) 85

So we have at the level of Sets

UFUX

nuUx Uex

Ua=Ub

UX UX vy

1

hence a o ex = boey. But, Ulex) is “very” surjective! So ex is a
coequalizer. Hence ey is an “epimorphism”, meaning that a 0 ex =
boex = a = bis valid. O

In fact, calling a map e epimorphism if
Va,b: A= B (aoe=boe=a=10)

we proved a more general fact:

LEMMA 4. A functor U that has a left adjoint and that satisfies
U(z) epi = z is epi, is faithful.

So, with (2) and (3) @ is faithful. With the help of (1), (2) and (3)
together, ® is provably full (as is ®!).
Anyway, ® acts “full” so far as maps between free things

X(F(n), F(k)) ¢ Ou-Alg(®PF(n), dF(k))
(53) X(BFy(n), F(K)) —— Op-Alg(Fo(n), Fo(k))

|

D
X(BF(n), BFR)) <= Ov-Alg(Fufn), Fo)

Everything works except we don’t know if ® is well defined. How can

this happen if not because ® and ® are bijections and inverse one of
the other?

86 LECTURE 15. (10/28)

Let us prove @ is full: given XY € A and X L DY seek
Y %Y in X with (o) = f.

EEX EEY

1 T2 1 I
F(U, U,
rox FWef) oy w@X—Ji»m@Y
EX gy T T
X e . ¥ UX Iy
& Usf

(“sequential switch” diagram: taking ; (z2) with the left (right) arrow
the diagram commutes). The goal is to figure out why

F(Usf)oz1 = F(Usf) o 22

The handy thing to use now is hypothesis (5) !. The diagonal dotted
arrow: is enough to see that

(54) Ula) = Up®(a) = Us(f)

FEzercise Prove equation (54) above.
The last thing is to see is comparing

dOX dD(A)
Bx s
X A

What does it take to see that this is an isomorphism?: next class.

LAl this is ill motivated if you don’t know about monads or triples.

LECTURE 16

In where the final part of the proof is given, and
other interesting stories are introduced (10/30)

Our setting now: still

L
X - @U—.A]g
®
U Fy
F Uy
Sets

where
Op “=" (natural transformations among {&ts}-indexed powers of U)%.

“_»

=" (X-morphisms among {Sets}-indexed values of F).

and X with coequalizers, kernel pairs, U(p) onto iff p is a coequal-
izer, and ...

Additional new hypothesis for today will be ...some reference here!
We already saw F' is full, faithfull, has a left adjoint, and Uy o & = U,
bo F = F,.

The only thing we need to see today is that ®® is “close” to the
identity in Oy-Alg.

So, let us assume (*). Given A € |@y|, ®(A) is a coequalizer in X,
namely the one we got by noticing that in Oy-Alg:

T1€E
.................... s
(55) FUE 2 B & F(Upd) 2 A
T2EE
and at the level of Sets:
ngz: U, A
Us B ——=2 Us FolUs(A) 255 Ug(A)

Upxo
87

88 LECTURE 16. PROOF 4

The counterpart to this (applying F) is

aj v
(56) FUE == FUy(4) =24 §(4)
T2

i.e. x;ep are values of ® and with them get the z;.
Now apply @ to (56):

O(a1) ®(coeq)

(57) S(FUyE) —— ®(FUs(A))

®(z3)

PP(A)

Considering diagrams (55) and (57) together we arrive to the following
situation:

T1€E

BIAE mag Fallpd)——t A
o -
O(FU,E) % o(FU(4)) 2L d)('i’)v(A)

Using the two equalities we got a map oy : A—®DA. Now, because

® is an adjoint, preserves kernel pairs. Hence ®(coeq) is a coequalizer

... Now the only thing left is:

FEzercise: Prove that a4 is isomorphism (this problem could be hard).
So, finally we arrived to the end of the story:

o
X fully faithful Alg
)
for every X € Op-Alg,
X = 0d(X) D(X) = ((D(X)))

Introduction to Monads. One of the things we could have focus
in is the iterated repetition of UF (in some sense that is the focus of
Beck’s theorem).

X

LECTURE 16. PROOF 4

Recall the particular cases of the equation

A(A,UX) = X(FA,X)

we studied in lecture 12, after definition 8. For X = F'A we get:

A

UFA{—}idFA
and for A = UX we get

EX

We could define two maps h,r as in the following diagram

X(FA,FUX)

AUFA,UX)
We have the following important observations:
LEMMA 5. L. Forall f € A(A,UX)
ex o F(f) =hax(f)
2. In the other direction, for all ¢ € X(FA, X),
Ulp) ona =rax(e)

89

PROOF. Just a naturality check, virtually a fragment of the proof

of the Yoneda Lemma. Simple Exercise.

(]

In the Yoneda Lemma, for any contravariant functor 7' : A? —&ts,

and for any object A € A,
TA = nat(A(—,A),T)

The question could arise, given A € nat(A(—, A),T") and consider its
image A4(idsa) € T'A under the bijection. When does an element of

T A guarantee that 7' is representable by A(—, A)?

DEFINITION 10. In the situation above, a € T'A is called uni-
versal element if, under Yoneda Lemma, a = A4(id4) for some A :

A(— A) = T.

90 LECTURE 16. PROOF 4

What does it mean more exactly?: A universal element is a kind of
“generic variable”.

PROPOSITION 8. a € T'A is universal iff VX € |A|,Vo € TX, 3¢

solution to the equation

(59) T)a)== (£€A(X,A))

~

PROOF. Suppose a is universal, use the isomorphism Ay : A(X, A) —
TX. So given x € TX, we have T(A3'(z))(a) = x, hence consider
£ =Xy (@)

In the other direction, if there is always a unique solution of equa-
tions of the sort (59), want to show that A : A(—, A)—T is an equiv-
alence. What A does: A(§) = T'(€)(a). The uniqueness of the solution
to (59) is telling you that Ay : A(X, A)—TX is 1-1 and onto. d

This is at the bottom of the statements of Lemma 5. It is just exp-
resed in a more intrincated way. As a result of this extra complication,
we get something. We can think of all n together as a map

idy — @ UF
The same with e:

idy «——— FU
If we apply U to the above diagram

U

v Y ypy

and consider now only the images of elements of F,
Ulep(-
pu LEr0) ey p

we get the following picture:

= [
idy — 1 Ly = ppy R

Now, if you write M = UF' it is obtained

idy — 1 M—P MoM

It is beginning to look like the first lecture again ... You have a “unit”
n, and a “composition” p. The miracle is, because of simple things

LECTURE 16. PROOF 4 91

arisen from e, this operations satisfies the laws of associativity and
unity (like monoids, recall the examples of the introductory lecture).

M pom M oMo
M (n) d pu assoc M(p)
MoM M MoM
M p

This is very much like functors from A4 to A and composition o.
Next time: the reason why n and p satisfy the conditions.

LECTURE 17
Monads (11/4)

For what follows, compare MacLane, CWM, pp. 78 ff. Consider the
diagram

X(FA, FUX)
X Faux Ex 0 —
PAX
Al AR s X(FAX)
Yax
A
—0n4 Urax
A(UFA,UX)
and
(60) oux,x(dux) =aef ex : FUX—X
(61)

Vara(idpa) =gy na : A—UFA
I want to do today Provably the first thing to notice is that:

THEOREM 4. With ¢, psi naturally bijections (natural in A and X
as shown), the maps ny and ex are themselves natural in A (or in X)
and satisfy:
(62) wax =€ex o Fa,UX()
(63) Yax =Urax()ona

Consequently, it follows that

(64) V€: FA—X, Jlo: A—UX with { = ex o F(z)
(65) Vo:A—UX, NE: FA—X with e = ny 0 U(E)

(66)

94 LECTURE 17. MONADS (11/4)

Conversely, Given, either natural transformations e x satisfying (64) or
na satisfying (65), the resulting proposed definitions of ¢ as e o F(—)
(or of ¥ as U(—) on) creates as sort of bijection, natural in A and X
that is exactly meant by the adjointness between F' and U.

Once you notice the front and back adjunctions ex and n4 (that
are really the universal elements Yoneda gives you), (64) and (65) are
just the statements about this universality. (Again: we are stating a
special case of Yoneda Lemma).

PROOF. Let us verify (62). In order to find that two functors are

equal, we just have to evaluate them: Let € A(A, UX) be given, and
@Ayx(w) € X(FA,X)

F(3
G =X

FUX X
We need to exploit somehow the naturality of ¢: For given arrows
A %5 Aand X 25 X' it says that the following diagram commute:

A(A,UX) ——+ X(FA, X)
PA,X
U(B)o—oa Bo—oF(a)
AAUX) — = X(FA, X')
Parx

Hence for = we have the equality

p(U(B)ozoa)=pBop(z)o F(a)

We want to compare

oa,x(z) = pux x(idvx o) = pux x(idux) o F(z)

See that we are using a tiny part of the naturality that is easy to
overlook.

The other part (63) is proved similarly.

Now, the “Conversely”. Is just the process of going from, given an
element in the () slot in the left hand side of equation (62) and find
and element (in the right hand side slot ()) as the unique solution to
(62), or viceversa.

In some sense this theorem is nothing more than a summing up of
all we already knew about adjoints. O

From the above discussion, for the diagram

iy FU idy

LECTURE 17. MONADS (11/4) 95

we get maps

FU
UF

id
(67) : U *
idy

and applying the first line to objects of type F/(—) and applying F' to
the second line we get

This is an instance of equation (62):

ex 0 F(na) = ¢(na) = idpa

There is also another way of combining tha maps in (67), and is
applying U to the first line, and to objects of the form U(—) in the
second line:

Here we have an instance of equation (63):
Ulex) onux = ¥(ex) = idux

The two unit laws yield (applying F' to the top one, and evaluating the
bottom one at A = UX):

FUFUX

(ny/ \

P FU.,
id
(68) FUX = FUX

F (Ux EFUX

FUFUX

96 LECTURE 17. MONADS (11/4)

These equations are in the category X'. Instead we could have applied
U to the bottom, and evaluating the upper diagram at X = F A:

UFUFA

% wm)
UFA

N
id
(69) UFA oA

UFK %FA)

UFUFA

Observe that in this diagram is never an U without and F' (UF'). So
write T' = UF', keep n = n and the only place where U appears above
without F write! gy = U(epa). So we have in A:

p:idg —T pa:TolT—T

The same token in the other diagram: FU appears everywhere with
one exception. So write G = FU, keep ¢ = ¢, and write? § = F(nux).
Hence we have in X

)
GoG G idy

(@)

So we have a notion of abstract monoid:
ToT

AN
N

ToT

The commutativity of this diagram follows from the commutativity of
the corresponding diagram (69).

(70)

'The p for multiplication.
2§ for diagonal, or co-multiplication.

LECTURE 17. MONADS (11/4) 97

Similarly, using the commutativity of diagram (68) follows the com-

mutativity of:
GoG
V%
G i &
e
)

God

Now, what about the associativity law I predicted?

T
ToToT—@»ToT

(71) pr 7

ToT T

t

What does it make this work? It is got to be naturality! Let’s unravel
the diagram (71), by putting again the old meaning of 7' = UF and

M= U(&‘FA)Z

UF({;‘F)

UFoUFoUF UFoUF

Ulerur) Uler)

UFoUF —— = UF
U(SF)

Now, notice that everything is U of something, so consider the diagram

P
rorvr LEF) pup

EFUF Ep

FUF

EF

98 LECTURE 17. MONADS (11/4)

and now notice that everyting here is acting on objects of the type
F(—). So we get finally the diagram:

F
FUFUﬂ. FU

EFU &

FU id

£
which commutes because ¢ is a natural transformation. Hence all the
chain above commute because F' and U are functors.
The analogous diagram for ¢

GoGoGFﬁ)—GoG
dc)
Go@ G

commutes for essentially the same reasons.
So the first obscure lecture now include the context of categories of
functors form A to A with compositon e as the composition of functors:

p U

Me M M

where p is the “multiplication” and 7 is the “unit-selection”.

id 4

What MacLane would call a monad in A (= monoid for o on A4 is
(as Barr pointed out) a triple (T',n,) with T € A*, n:id4 —T and
p: T o T—T such that diagrams (70) and (71)commutes.

LECTURE 18
T-algebras

DEFINITION 11. Given a monad/triple/“standard construction”
(Tyn,p) = T on a category A, by a T-algebra is meant a constella-
tion (A, a) with A € |A|, and o : TA— A for which the following two
diagrams commute:

TA
A _ A
ldA

TTA 2 T4

TA

EXAMPLES. (1) Let A =TB, and let
(0 : TA—A)=pp : TTB—THB

Then (T B, up) is a T-algebra:

TTB
mB \g
TB TB
idrg

100 LECTURE 18. T-ALGEBRAS

was jsut the half of the unit-law pairs, and

7778 LFE prp

HTRB "B

TTB TB

1B

(2) Other class of examples: Given any adjoint pair of functors
U
F

X

A

with form and back adjunctions
n:idg —UF €: FU—idy

such that 7' = UF, 5 = p, Uer)=p (in T = (T,n,p)
UX,U(ex)) is a T-algebra for all X € |X].

). In this case

PROOF. In fact, UX ¢ |Al, Uex) so Ulex) : T(UX)—UX:

UFvx 2o x)y ~ yrox Y,y

Hence, (A,) = (UX, U(ex)) has the right structure to be a candidate.
Now

UFUX
UXx - — UX
ldUX

by adjuntion laws. Now, why the following diagram commutes?

rrux LYSX puy
HUx Ulex)
TUX UX
U(&)()

Because T' = F'U.

LECTURE 18. T-ALGEBRAS 101

Remark: this is a broader class of examples than that of example (1),
and more important: algebras of type (2) are part of a completely
natural construction:

0
X T-Aalg

F
U Ur
A

To endow T-algebras with category structure, define “homomorphism”
form (A, a) to (B,) to mean: any A-morphism f: A— B such that
T f makes the following diagram commute:

rf

(72)

TA TB
A g
A - B
f
Also, free of charge, we get the preservation of the unit:
T
TA / TB
NA B
A B

EXAMPLES.
1. id4 will be homomorphism from (A, &) to itself.
2. If (A, o) Ay (B,B)and (B, 3) -2 (C,v) then gof : (A, a)—(C,~).
The fact that this composition is a homomorphism follows from
the commutativity of the squares in the diagram

TA TB TC
Tf Tg

a B ~

A1 . p_9 0

102 LECTURE 18. T-ALGEBRAS

and the fact that T'(go f) =Tg Tf.

So, Ut is a functor! The only thing left is to check that ® is a functor.
We already dnow how @ is defined on objects. Let £ : X—Y. For
Ur(®(€)) = U(€) (to commute) it means ® : (X)—d(Y), that is

U(f) : (UX> EA«‘{)_}(UY; 5Y)
We jusst need to check that U(¢) is T-algebra homomorphism.

T
TUX _U@ TUY

UEX UEY

UX ———UY
U(¢)

Writing 1" = UF this diagram is U] | and [] does commute! So really
® becomes a functor.

Now I like to convince you that Ur invariably has an adjoint functor
(®F will serve ...). To see a left adjoint to Ur : AT— A define

FToA— A" FT(A) = (TA, pa)

It is well defined at least at the level of objects, because we checked
that this objects are algebras. Now,

A FT(4) = (TApa)
g (g) T(g)
B FY(A) = (TB,up)
Why T'(g) is a T-algebra homomorphism? Let us see:
TT
r7A—2. 178
[tA 1B
TA TB
Ty

Does FT(g) become a functor? The identity is easy. What about
FT(go f)?

LECTURE 18. T-ALGEBRAS 103

Finally, why should F'T (as defined) be a left adjoint to Uy : AT—s A?
We could

Y
(73) A(A,Ux(B,B)) = AT(F"(A),(B,B))
@

To prove this, it is easier (because of the context) to exhibit the front
and back adjoints, i.e. maps nT and €T such that

T
A—TA U FTA=TA (TB,us) = FY(B) = FTU(B, 8)

let n3 = n4 and EEFB,ﬁ) = 3 The naturality of % is reasonable clear.
What is not immediately clear is that pp are T-algebra homomor-

phisms.
T
TTB b TB
/B g
TB B
p

Does this commute? This is a particular part of “(B,) is a T-algebra”,
exactly expressing 3 is a T-algebra homomorphism.

Now we know the front and back adjunctions (using the fact that
almost everything begin with n and p it is better to use the two equa-
tions below than to go through hom-sets).

(74)

7711" _ T
idy UTFT UTET

E

idy
UrFtyT FIUTpT

y W W W
U Ut F FT
id? ud

The right-hand diagram commute because & 0 n4 = id is one of the
algebra laws. To check the commutativity of the left-hand side diagram,
it is enough to apply UF' to the whole diagram; we get at the level of

104 LECTURE 18. T-ALGEBRAS

objects which clearly commutes:

TTA
TA : TA
ldA

So the front and back adjoint laws are checked!
Now in (73): To each A-morphism f : A— B (given T-albegra
(B, 3)) exists a unique AT-morphism

FY(A) = (TA, pa) arfow (B,)
such that fo na = f. How do you find f? Indeed f is the image of f
under the passage

F g B —
A(A,Ux(B, 8)) — AT(FTA, F*UT(B, 8)) —22_ . A(F"A, (B, 8))
in words, f = £(B,5)0 F'(f) (this seems completely misterious if not in
conjunction with diagram (74) where it comes naturally).
The last thing: were (T,n,p) = (UF,n,Uer) for adjoint pair ()
then as F'T one could use

GoF: A—X—A"

LECTURE 19
Proof of Beck’s Theorem (11/11)

Let T = (7,7,) a monad, and consider again the diagram

®
A AT

(75) .
F Ut
A

When comparing ® o F(+) and FT()
1. Have there the same UT (each other)?
2. If so, are the o’s the same?

Well, given A € |A],
OF(A) = (UN(®FA),U(cra))
= (UFA,Ucp,)
= (T'A; pa)
= F'(A)
(Is just ® commute both with U/ and F'T)
Why F'is full and faithful on free things?
0]

X (FA X
(FA,X) locally full & faithful

A(FT,0X)

N /

A(A,UX)
Summary: ® commutes with the U’s and with the F’s, and each
Ppox: X(FAX)—AT(FTA 0X)

is a bijection. Were ® to have a left adjoint (see diagram), ® would

have to preserve coequalizers. Now, in AT, for every object A =
105

106 LECTURE 19. PROOF OF BECK’S THEOREM (11/11)

(|A], @), the algebra A is actually coequalizer:
F'(a)

AT FT(FT(JAN]) Fra) FT(A]) 2 A
T i S
(76) T(a) i
A TT(|A]) «- - wa - T(A]) | A
T'(n4))
MA| ‘ NT|A|

And we know 14 and 174
anpu =id (alg. requirement)
tamr)a) = id (triple requirement)
pa T (a) =id
The diagonal
by

P p—

T(|Af)
MA| NT|A

T|A| “zray TT14

Also T'(n)4)) works as a “reflexive” map
T(a) =T(na) = T(aons) = T(id4) = idp)4
So by an old proposition (see prop. ??) about lifting coequalizers,
the algebra A is even is a coequalizer of a UT-split, UT-reflexive pair.
In effect, from coequalizers in AT which are UT-split

Ha]
Ee_§—B

€2

Q

we go to UT-split pairs in AT

T

_—

_

)

LECTURE 19. PROOF OF BECK

where /' = FT(?) and B = FT(77)
F and use fulness of ¢”)

'S THEOREM (11/11) 107

- Now, using ¢-! (“replace F'T

by
we get UU-split pairs in X

F(?) —5_ F(1)

LeesSS s, =

)

Finally, if U-split pairs of X-morphisms have coequalizers in X the

simple algebra (|A],a) = A gives rise to g “resolution” (see diagram
(76)
Uerp(la) p
F(FY(|A]) =——= F(|A)) Q
F(a)

Let &(|A], a) = Q. Now is really a matter of checking that this really

does the right job as adjoint: Let vy € X(@(]A/,a),X), and take a
test map ¢ and consider the diagrams

FUP(A) =2 iy 2

F(a)
\

UFUF(A)) F_%(’% FT(4) 2 (1), a)

\ l
15

t ¢ are in 1-1 correspondence with the ¢,
and viceversa.

<

X

It is not difficult to see tha
Hence for each v we get a
This works if {/-g

plits pairs have coequalizers in X. Why is this
true?

_ LEmMmaA 6. IfU . x— 4 reflects coequalizers of U-split pairs, then
pod =idy.
ProoF.

EFR(|A] .
_Til*pqoxoglﬁ¢¢x

F(Uex) \ Jg

FUFUX

108 LECTURE 19. PROOF OF BECK’S THEOREM (11/11)

For ® o ¢ = id4r one needs, additionally, for U to preserve coequalizers
of U-split pairs. So we have a comparison

(iA|7 a)—)q)((I)(A|7 a))
® preserves coequalizers. ® has no good reason to preserve it, but it

has to preserve those it is forced to. See the diagram

o

:__) @(::;__))

U ot

coeq

and recall that UT® = U and UT reflects coequalizers of UT-split pairs.
So, ® preserves coequalizers of U-split pairs if U does. But, the
kind of coequalizer ®(|A|, o) constructed had precisely this property.

LECTURE 20
Triples v/s Theories (11/13)

We have the following list of themes to develop:

1. Triples v/s Theories

2. Structure v/s Semantics
3. Rank (when A = Sets)
4. Birkhoft’s Theorem

5. counterexamples

Let us start by the first.

Algebras as I described them at the beginning in terms of sets with
operations on one hand, and algebras over a triple on the other seems
to have any connection. Here it is:

Fix a category A. Define a “theory” over A to be

1. a functor A -+ ©, where |0] = | A] and §(A) = A, and

2. another functor © —— A, right adjoint to # (with fixed choice of
front and back adjunctions).

By a category of #-algebras mean the pullback in Cat:
0-Alg - - -~ Sets®”

—0#f

1
1
1
1
1
'
op
A Sets?

Y

(The same as before, but instead of Sets we have an arbitrary category
A). The expanded definition of — o 6 follows from

6
(78) Acr 07 — L . Sets

Also, recall that an element of Sets®” is a pair (A,a), where a :
0°?—Sets, and a(n) = a(d(n)) = A(n,A). (A(n, A) “smells” like
A™ —which is the case in Sets, or in other words, “is what A thinks is
an n-tuple in A”)

109

110 LECTURE 20. TRIPLES V/S THEORIES (11/13)

Hence we have the diagram:

in © (in Sets)
n aln) = A(n,A) A"

a} ia(oz) La(a) la(a)
k a(k) = Ak, A) AF

For f:n—A is really worth rewriting it
{a(a)}(f) = f*a: k—A

This comes from

foa
B a /
l A
O-mor O-mor " A-mor

And with this it is easy to get the following equations:

Preserve composition means:
(fxa)xf=f+*(cop)
Preserve identity means:
[ridp = f
Finally, for a € A(k,n), from (78),

f*0(a)=foa

Notice that the formalism is exactly the same as in the case of Sets.
In (77) we can name Uy and we can construct a functor Fy :
A—0O-Alg. How? using the monad that is lying behind the dia-

gram. Look back to # and 6 in (1), (2) of the definition of theory: we
have already a monad on A. So write

T = (T,n,1) where T'=008

LECTURE 20. TRIPLES V/S THEORIES (11/13) 111

and where 1 and p “are” the front and back adjunctions for (6, 8).
Consider the diagram

A

0-Alg — Sets®”
Uy —0df

A SetsA™

)/
and check that
O(0(—),0(A)) = A(—,00(A)) = A(—,TA)

Hence, the diagram above (because ©-Alg is a pullback gives an arrow
Fy). So we have a functor Fy running upwards in (77) We can prove
(in the same way as we did in the case of Sets) that Fj is an adjoint
to Uy (the generalization is very straightforward).

Now, fix a monad T = (7,7,). On the one hand, there is A", a
T-algebra. On the other, there is the O with

1. A(k,Tn)
Or(k,n) = ¢2. AN FTk, Fn)
3. nat((UT)*, (UT)*)
where
Ut AT—A (U™ = A(n, UT(=)) : AT—Sets

It is easy to see that these three things are interchangeable (see the
same proof for the case of Sets in lecture 14).
Consider the functor

0 : A—)@T
defined on objects as §(A) = A, and on arrows as
Ok —Ln=—o f = (UT)
Now, what can we use for 87 Define simply

é g @T——>.A

112 LECTURE 20. TRIPLES V/S THEORIES (11/13)

acting on objects as §(A) = T'A and on morphism as the corresponding
underlying morphism.
The monad arising from this adjoint is the same as the original.

WHY ALGEBRAS FROM THE POINT OF VIEW OF MONADS?. Why,
given T, should AT and Op-Alg the same? Because

First point of view. Fach has an underlying functor
U
F

A

with left adjoint F' and “composition-triple” just T again. Each fulfills
the hypothesis of Beck’s Theorem, and each looks like AT.

Second point of view. (Or how this things connect explicitly).
Let’s look at

AT

A ja) = AT(—, (A, a))

Or-Alg — Sets®”

Uer FTo—

SetsA”

A

An element (A, a) € AT (upper-left corner) “going through” the upper-
right corner gives the path:

(4,) ~ AT(=, (4, 0)) ~ AT(FT(-), (4,)
and “going through” the left-lower corner:
(A, @) ~ UT(A,a) ~ A(—,UT(A, a))

Now, because F'T and UT are adjoints, the final results are = (moreover,
are equal choosing the right ...).
So (because ©1-Alg is a pullback) we have a map AT— 01 Alg.

What does it do? Let £ —+ n in O and n 4 Ain A. Notice that w

LECTURE 20. TRIPLES V/S THEORIES (11/13)

also & == Tn. Hence define f *w (in A) by
i

Tn TA
w o
k A
frw
So, we get a map
(4,0) = (A, a)

Now, how do we get from O1-Alg—.AT?
Fix (A, a) € O1-Alg and define

(A, a) — (A, U(5(A,a))

113

Now check that this is really in AT (o satisfy the conditions of T-

algebras).
(Complete this part!)

LECTURE 21

Structure v/s Semantics I: The semantics functor.
(11/18)

Think of this words more as a slogan than technical words. The v/s
here —unlike in the case of triples v/s theories— is refering to an adjoint
pair of contravariant functors.

adj. cat. over A Monads (A)

Structure

F} lU ----------- - (UF,n,Uey)

FT} lUT< ————————— TZ(Tﬂ?aN)

Semantics

So, let’s back up a little bit. What does it mean a pair of contravariant
functors? Consider the following familiar example:

C
KT, — Real top. vect. spaces
X — C(X)

where K73 is the category of compact hausdorff spaces and C' is C(X)
is the set of continuous real-valued function on X. We have

C(X)=Top(X,R)=KTop
What could come back playing the role of an adjoint? Let’s see:
f: L— Cont(X,R)
can be thought as
f:LxX—R

such that each f(/,=) is continuous in =, and each f(—,z) is linear in
—. Hence,
Cont(X,R%) = Cont(X, Lin(L, R))
115

116 LECTURE 21. STRUCTURE V/S SEMANTICS I
So we have a kind of duality between

(L,Cont(X,R)) and (X,Lin(L,R))
(think of Cont(X,R) as F(L), and of Lin(L,R) as U(X))

So we have a pair of contravariant functors D and A!

are mutually adjoint on the right if
B(B, D (A)) 25,4 A(A,A(B)) 5.4 A7(Auy(B), A)

A,y is left adjoint to DP (also D, is left adjoint to A°P).
This is what is going to happen in diagram (79).

structure v/s semantics. Fix A an consider elements of A as cat-
egories X' equiped with a A-functor U that comes with a left adjoint
and maps X

X

X X’

F| U F\u

A = A

Call it adjointed categories over A. The name Structure is for (monadic)
structures, the only important categorical aspect of the adjoint pair

U
}P

X A

Why the other is called Semantics? 1t has remained a mistery for me for
more than 30 years ... (It has logical connotations, as the “concrete”
object that is a “realization” of a theory and has this sense in Lawvere).

Is there a obvious way to make Monad(A) a category? As maps
from one triple T = (7,n, 1) to another T = (1,5, ') (both in the
same category A) use any natural transformation A : T—7" for which

1Obviously the d’s are for dual, the natural examples of this kind of functors.

LECTURE 21. STRUCTURE V/S SEMANTICS I 117

(Recall the analogy with the category A#, composition o and identity

ida):
A
T T’
id 4

A converts the unit for 7" into the unit for 7”. For the composition,

A
Tor 2N o

T

T
A

where A o A is the common value of the outside legs of the following
diagram (which commutes because A is a natural transformation):

T oT
e NI
Ao ,
Tol -------------- »T"oT
) ToT T

This is exactly the same thing that happened for monoids and sets in
your first steps in algebra: given a function A : M— M’ get a map
from M x M—M' x M":

hW idars h
hoxh
MXM —————— >_< _____ - ><]\4/
idas XA Ad,
M——— M MEE M T i

Ezercise (extremely straightforward) With this definitions of objects
and maps, Monad(A) becomes a category.

118 LECTURE 21. STRUCTURE V/S SEMANTICS I

Now, how are Structure and Semantics functors? We are going to
see that they are adjoints. Consider the diagram

aa
Let us take two monads and a transformation as in
T = (T,n,p) == T' = (T, 1)

For each A, given o/ we get a = o’ 0 A4 (see the diagram below):

A
TA A T'A
(0% (0%
A

This gives you an idea of how the contravariant functor is behaving.
If (A, o) really is a T"algebra, (why) is (A, o A4) a T-algebra? We

need to see whether (and why) the following diagram commutes:

(81) 4
0
A
We can see that the upper right triangle commutes because ..., the

upper left by definition of «, and the one in the bottom because T’ is
an algebra. Similarly, using the hypothesis about the maps that appear

LECTURE 21. STRUCTURE V/S SEMANTICS I 119

in it, you can check the commutativity of the following square:

TTA La TA
w
To
T(T'A)
Ao A A4
L/\T'A
HA T'T'A — T'A o
Ha
par
T'A
a/
//\A(x
TA A
(84

Replacing legs by equivalent legs you reach the desired goal. This
complete the proof that taking a (A, a),

—0A

AT
A

Now it is just a matter of checking whether the algebra homomor-
phism condition persists: if (A, a’) and (B, 3') are two T"-algebras and
f: A— B is a T"-homomorphism from (A, o’ o A) to (B, ' 0 Ap).

EXAMPLE. Let R be a ring, M an R-module. Consider

AT

R@M—M, R—R
We have
RoM —RQM

M

This is completely the analogous, and even the proof is analogous.

120 LECTURE 21. STRUCTURE V/S SEMANTICS I

Writing the equations of this will give a completely uninteligible
proof, but a diagram shows it immediately:

N A
AN

The upper square commutes because A is a natural transformation, and
the bottom one because f is a 7" homomorphism. The triangles on the
sides commute because of diagram (80) above.

This does the story of the semantic functor. Now, why structure is
a functor? Next lecture.

LECTURE 22

Stucture v/s Semantics II: The structure functor
(11/20)

In last lecture we saw how Structure behaved on objects. Now I want
to show that it behaves as functor on ‘maps’ as well. Let us consider
the diagram

We have U’ o X = U. Also we have two tripleson A: T = (UF,n,U.,)
and T' = (U'F', 0, U.,,) coming from the adjoints pair F, U and F’, U’
respectively.

Claim: the equation U’ o X = U will drive us into recognizing a
way of going from T to T".

First, we ...to go from U'F'A—UF A.

"F"A— X(F
AA . UIF//l U(— (A))

U'(X(FA))=UFA

In X’ we have

Now, when 7 = F'A we can ask: what lands on the identity of F'A?
Let A4 be the precursor of idy and let Ay = U'(A4). Now, idy is
natural in A, hence X is natural.

EXERCISE. Prove the n identities. Hint: follow from the fact that

Ag: F'(A)— X (FA) was an A’-morphism
121

122 LECTURE 22. STUCTURES V/S SEMANTICS 1I

The compatibility comes from a different source: In the equations
above, both front adjunctions are build in the process

UNsonag =Asony =(na)

In particular

ATy
I |
Op < vvevnen- O
o T
A = A

Is there a natural way to walk the path ---7 Yes. One way to interpret
equations above in the case 7 = F'() (also we are writing F” instead

of F™ and F for FT):

Or(A, B)= AY(F'A, F'B)
=~ AT(F'A, X(FB))
=~ A(A,U'X(FB))
~ A(A,U(FB))
~ AY(FA, FB)
>~ O1(A, B)

We can go from the “free” objects in AT to AT through this path:

But we saw this situation before. How can we extend this proposition
to all of AT? Just the same as before (recall that AT has the equalizers
we need for that construction).

LECTURE 22. STUCTURES V/S SEMANTICS 11 123

Remember, from the perspective of theories, algebras were a pull-

back:
0-Alg —— Sets®”

A— 0
A v SetsA”
On the other hand:
F
A X
U

declaring
Ou(A, B) = nat(U?,U#) = nat(A(B,U(-)), A(A,U(-))

The claim is somehow that the passage from such a scheme Theory/.A
to a Cat/ A .

If we look at nat(U®, U#) it becomes direct to recognize that

Ou(A, B)=nat(UB,U*) = nat(A(B,U' (X (-))), A(A, U'(X(-))))

0/
Ou/(A, B) = nat((U")?, (U)*) = nat(A(B, U'(=)), A(A, U'(-)))

This is how structure from the theories perspective is even easier than
the monad perspective.
Semantics from theperspective is easier, because
Checking the adjointness (we haven’t done it for monad perspective
yet)
Th(O, Str(X'— A))

Cat/ A(X' —s A, O-Alg—sA)

124 LECTURE 22. STUCTURES V/S SEMANTICS II
X/

0-Alg —— Sets®”

A

The arrow from X’ to A is already given. The one from X"’ to Sets®”
is got as follows:

X' —Sets®”
X' x O — Sets
0% —Sets”™’
®—>(SetsX/)Op
Now, the last line factors
O—Op —(Sets™')

where the first arrow comes from the condition of the pullback in (?7?).
From that perspective structure and semantics:
inverse element ~» monad level
composition of functors ~+ theories level.

LECTURE 23
Birkhoff’s Theorem (11/25)

See Manes, pp.

In this lecture we are going to talk about Birkhoff’s Theorem (also
called HSP theorem) and how it fits in our framework.

In its original form it said:

THEOREM 5 (Birkhoff). If (A,n) is a finitary (that is, each set
n(w) is finite for all w € A) “signature” and V C A-Alg is a “class of
algebras”, then V is closed under the formation of products, subalgebras
and homomorphic images if and only if V = (A, e)-Alg for some system
of equations € on A-Alg.

The next stage is due to Stominski: Same “then”, different “if”:
signature not necessarily finitary, but just “bounded” (IR : Vw €
A,n(w) < XN). Both, Birkhoff’s and Slominski’s theorem are formu-
lated so: in terms of some preexisting operations, what does it take to
be

Lawvere’s and Beck’s theorems are different in that they don’t focus
in a certain category of algebras, but in an arbitrary category A with
a functor U : A—Sets.

How do they fit in our general setting? In the process of going from
the closure properties to the definition of an equational class, one needs
and adjoint functor V < A. Once one translate free algebras to free
algebras in V you are ready.

Back to the pages of Manes.

DEFINITION 12. Given a monad 7 in a category A, a subcategory
Vs AT
is called an “abstract Birkhoff category” if
(B1) For all FT(A) there is F(A) € [V| such that
(82) V(F(A),V) 2= AN(F(A),i(V))

is natural in V.
125

126 LECTURE 23. BIRKHOFF’S THEOREM (11/25)
(B2) For all V € |V, for all (4,a) € AT, for all f : i(V)—(4,a)
with UT(f) split epi, then
(A, o) =1i(7 € |V]) Le. “(A) €|V
(B3) V is meant to be full subcategory of A",

(B2) tries to “translate” the homomorphic images in the best way it
can be expressed here, close under the formation of quotients. U™ (f)split
epi means that there exists g € A(A,UTV) with UT 0 g = idy.

First thing to observe:

(B4) the functor i : V— AT has a full-fledged left adjoint and

(B5) V has coequalizers (same as in AT) ofr U-split pairs (U =g
UTo3i).

The reason for this: if you had (82), you get a left adjoint in the
following way:

V(F(A),V) = ANF(A),i(V)) = A(A,U(V))
Now if you know where to send the free algebra in a way that is con-

sistent with
7

K AT

A

4

KG(FT(A)), K) = AT(F¥(A),iK)
In such a situation you can extend to arbitrary algebras if K has enough
coequalizers

F'(a
FTFT(A) () FT(A4) A4 (4,)
7] (8%
FEzxercise: prove this. Hint:
14 A"
tfl l f
O:O __>.. - o:;o __> (A)a)
UT
00—

(B2) says in this case: there is e such that V Ty 00~ L (A, «a)
Using the property that ¢ doesn’t colapse any map (is the inclusion),

it follows that o”Zo j—) e is a coequalizer.

LECTURE 23. BIRKHOFF’S THEOREM (11/25) 127

(B5) is a result of (B2). So (B4) is (B1) and (B5) combined. Next
(B6) U : V— A is monadic (& la Beck).
In order to verify Beck’s theorem you have to verify:
(i) U has a left adjoint (this is (1))
(ii) U has U-split coequalizers (this is (5))
(iii) U preserves coequalizers of U-split pairs.
(iv) U reflects coequalizers of U-split pairs.
For (iii) and (iv) go back to diagram (??): reflects means: take a pair
oo to A", then see down and use i.
So, U is a monad (a la Beck), and hence

A

?

= AT

2 is induced by

a map of monads T—$
or a map of theories @7—Og
or T"TA— S A being a split epi.

The reason is

UTFTA=TA UGi(FTA)) = U(F(A))
Now using (82) with V = F'A we get

FT(A)—si(FA)

So

TA=U"FTA—U"FA=UFA=UiF"A
Canonical T—S has each TA—S A a split epi
THE CASE OF Sets. The last thing is to go to the case A = Sets and
read off:

THEOREM 6 (Birkhoff). When A = Sets, V C Sets" is an abstract
Birkhoff subcategory if and only if V is HSP-closed in Sets”.

PROOF. =) easy because V has all these creatures and i reflects
them.

<) How given HSP, you achieve (B1) and (B2)? Condition (B1) is
literally condition H. Strategy: Set (A,) be any T-algebra in SetsT.

128 LECTURE 23. BIRKHOFF’S THEOREM (11/25)
For each V' € V] and each f: (A, a)—i(V), form
=v.n< ((4,0))" = (A x A, [(e,)])
and using HSP, (A,a)/ =v,5)€ |V|. So take
E= ‘Of =wvnC (A X A, [(a,a)])

Claim: A/E € |V|, and it does the trick (B4) is asking for. Indeed,

select judiciously representatives ofr a full spectrum of =w,5) ... say

(‘/jvf]')v JeJ.

and [[;c;i(V;) € V according to hte P-part of HSP. The congruence
relation for this is:

E E(.‘.fj... Yies (A, a)
(4,) HJ@'(VJ')
(A, a)/E

O

Summarizing,

e For finitary operations and A-algebras get Birkhoff’s theorem

e For infinitary bounded operations and A-algebras get a version
of Stominski’s theorem.

e Monads in Sets (compact Hausdorff spaces, compact abelian

groups, ...)

LECTURE 24

[Counter]examples and corollaries (12/2)

COMPOSITE MONADICITY (TRIPLEABLENESS) THEOREMS. When two
functors are composable? The setting is always this:

L /Y
Fol Uo

F:FQOF1 K U:U10U0

A

with X monadic over K via Uy, Fp, and so on. K monadic over A via
Ui, Fy, etc.

Let us see what do we need:

1. It is not hard to see that F' will be adjoint to U if Fp, F} are
adjoint to Uy, Uy.

2. We also need X has coequalizers for U-split pairs

3. preserve and reflect coequalizers (77 this part needs to be com-
pleted)

In this setting, X will be monadic over A via U, F', etc. if alterna-
tively

1. If the coequalizer in K for U;-split pairs of K-morphisms are in
fact already split coequalizers in K (some people would say Uy
is very tripeable) or

2. If Uy “preserves and reflects” coequalizers in X and if A has
coequalizers for pairs Uy of which has coequalizers (Uy is crudely
tripeable).

129

LECTURE 24

[Counter]examples and corollaries (12/2)

COMPOSITE MONADICITY (TRIPLEABLENESS) THEOREMS. When two
functors are composable? The setting is always this:

X
Fol \Uo

F:FOOF1 K U:U10U0

A

with X monadic over K via Uy, Fo, and so on. K monadic over A via
Uy, I, etc.

Let us see what do we need:

1. It is not hard to see that F' will be adjoint to U if Fp, F} are
adjoint to Uy, Uy.

2. We also need X has coequalizers for U-split pairs

3. preserve and reflect coequalizers (77 this part needs to be com-
pleted)

In this setting, X" will be monadic over A via U, F', etc. if alterna-
tively

1. If the coequalizer in K for U;-split pairs of K-morphisms are in
fact already split coequalizers in K (some people would say Up
is very tripeable) or

2. If Uy “preserves and reflects” coequalizers in X and if A has
coequalizers for pairs Uy of which has coequalizers (Uy is crudely
tripeable).

129

130 LECTURE 24. [COUNTER]JEXAMPLES AND COROLLARIES (12/2)

In a schema:

0
CcT l T
(83) T = o = T
T l VITT
M '

Why such things are necessary to tripeability?

COUNTEREXAMPLE 1. Let us consider the following diagram:

Torsion free Ab. Groups

FTorsion free quotient Utorsion

Ab. Groups

Sets

Here the triple in Abelian Groups is T(G) = F(G), TT(G) = T(G),
where F' is the torsion free quotient. So u : TT'—T is the identity,
and n : id—T is G — T(G). What does it mean here to have an

algebra?
(G)

le ~
G = G
ne must be 1-1 and onto. So an algebra for the resulting monad is
nothing else that to be a torsion free group from the beginning. BUT,
Torsion free Ab. Gr.

(84) Fl U

Sets

LECTURE 24. [COUNTER]JEXAMPLES AND COROLLARIES (12/2) 131

is NOT monadic. What fails?
k
ED
(85) n

- o
(L) 1 040,11

Z

7./27.

where ED = {(k,n)|n 4+ k € Z,} are the even differences.
(85) is U-split in Sets of the original pair in (84). Now,

A

)

ED z {0}

If A is torsion free, then the {0} group is the only so the functor U
doesn’t preserve the coequalizers for the U-split pairs (Zq must have
been the coequalizers in Abelian Groups). Condition (2) fails, condition
(1) also fails.

This show basically that something must be added to the sole con-
dition of both Uy and U; been monadic.

Now coming back to diagram (83). If you combine VI'T and CT in

various ways:
| X
| / U Wlect
l o o}
l \ %5 erves

One could ask bizarre situations. One is this: Suppose (just for the
sake of easiness) that there are no empty S-algebras and no empty
T-algebras. Denote by Sets, the category of non-emtpy sets.

Y

Sets® x SetsT — Sets, x SetsT

monadic

2]

US|uT

4 Y

_monadic Sets x Sets —— Sets, x Sets.,
no

monadic

no

Y
Sets Sets,

132 LECTURE 24. [COUNTER]JEXAMPLES AND COROLLARIES (12/2)

Is it monadic? Yes, but the proof uses (B1) and (B2) in some places.

COUNTEREXAMPLE 2. Let Banach the real line with continuous real
linear transformations of norm less than 1.

Banach
li| |D =Ban(R,—)

Sets
where D = Ban(R, —) = unit disc of (-).
Ban(l;(n), V) = Sets(n, D(V))
We have that the image under D of all continuous linear transforma-

tions from /;(n) to V is isomorphic to D(V™). Could this be tripeable?
NO. The triple

D(l ~— D(l4(D(l
" () = o (l1(n)) 7 (L(D(ly(n))))
The notations become cumbersome. Call n(:) = [i], so the elements of

D(l;(n)) are of the form
> a;lj]

JjEN
Hence the elements of D(I1(D(l1(n)))) are:
> b [Z ai[j]]
j€DIi(n) €N
BUT, this is not monadic:

Take the unit disc. Take the open unit disc. It is a subalgebra of
the unit disc.

O teeeeaean °] —— 1
0/0
0 i 5 Yo 1

This is a split coequalizer in Ban. What fails? Congruence relation
bussiness.

LECTURE 25
Rank (revisited) (12/4)

In the context of past lectures, fix A = Sets and focus on triples,
monads, theories, categories with adjoint pairs, ... over Sets. Let

Sets — 0, and define:

Th(©,80) :
Vn € Sets Yw € O(1,n)
dk € Sets : |k]| <t
3f € Sets(k,n)

I € O(1,k)
such that
1 d w
156) \ 3 /H(]:)

(If w is an n-ary operation, this is saying that only k variables matters,
the others remain unchanged). This is the rank of a theory.

(free algebra)(Xy" Sets) : YnU (F(n)) = Vn |J U(F(/)(UF(k))

[IE]l<x
fik—n

For a triple T = (T, n, 1),
triple.(T) iff ¥nT'(n)=Vn |J T(f)(T(k))

[k]|<x
fik——n

When a theory and a triple goes hand by hand, i.e. when
O = O
O(1,n) = Sets(1,T(n))

both definitions coincide.
133

134 LECTURE 25. RANK (REVISITED) (12/4)

7. Given a theory 8 : Sets— 0, mean by its t-truncation the full image
O, of the restriction

0
Sets, Sets Q)

0.
r-truncation
Ol.

where Sets, means sets of cardinality less than t. When one speaks of
algebras, i.e. a functor @ —Sets, we obtain a composition

O-Alg Sets®

comp. w/ 0,

Sets —Y> SetsSets™ Sets,?

restr. tot
THEOREM 7. If (X, FU) gives rise to a monad T and theory Ot
which in turn yield Sets™, then the following are equivalent:

1. rank v for the objects of X

rank v for the associated monad (T has rank < t)
rank v for the associated theory (Ot has rank < t)
rank < t for UTFT in Sets”

(background for this):

-Alg —— Sets®”

G i W0 b

op
Sets®r

comp. w/ 0,

Sets ——— Sets " — -~ Sets??
Y restr. f
So there is always a way to compare 8-Alg and O.-Alg. (5)
is saying that the functor that lose sight of th high powers is
nonetheless an isomorphism.

LECTURE 25. RANK (REVISITED) (12/4) 135

6. O.-Alg—Or|.-Alg is an isomorphism.
where ¢ is a reqular cardinal (see definition in lect 27).

Proor. (1) = (2)--- = (5) = (1)

(1) = (2). Just note T'= UF when applied to f,n,k.

(2) = (3). Since (see (86)) every n-ary operation is at most n-ray:
is k-ary for some k.

(3) = (4).
O(1,n) = Sets(1,Tn) = Sets(1,UTF™n) = Sets™ (1, UTFTn)
(4) = (5). Why the dotted arrow in the diagram (in (5) above)
is an iso? Given a O.-algebra (A, a) from which one has meaning for
ax X € A, forae A¥ and A € O(1,k) = T(k). So long as ||k|| < t wish

now to have meaningful and well behaved expressions a*w, for a € A"
and w € Or(1l,n) = T'(n). How to do it?

weT(n)= |J T(T(K))
[kll<x
fik—n

There is k, X € T'(k), k —4 n, such that
w=T(f)(A) =06(f) oA
(from the perspective of the theory). So define a*w € A by
axw=ax*x(0(f)orN)=(a*x0(f))*A=(ao f)*A

k / XA
ao f

There are tedious verifications to check. (This is the only way of having
big n-ary operations in ©-algebras with underlying sets of small size

This makes sense:

Setsy).
(5) = (1). A more general fact:
T-Alg Sets?™
F|\U

op op
Sets — Sets®*”* . SetgSetse

136 LECTURE 25. RANK (REVISITED) (12/4)

If k < ¢, then F(k) =T(1,k) = nat(U*,U). For general k, need to see
that the class nat(U*,U) is a set, namely

U U/(nat(U*,0))

[IE]|<x
fik——n

where U/ is defined as usual: (n — UA) = (k—UA) in
r 2 uk Ay
The set nat(U*, U) plays here the rol of free algebra for nat(U™, U). If

you mimic the proof of the ©.. truncation,...

O

LECTURE 26
V- Categories (12/9)

References for this lecture:

1. Proceedings Conference on Categorical Algebra, La Jolla, 1965,
Springer-Verlag, pp. 421 - end.

2. Springer LNM 99, pp. 384-ff

3. Springer LNM 195, pp. 209-ff

QUESTION. What must a category V be doing (be equiped with) in
order to let one use the objects of V as potential hom-objects for other
categories?

Some examples of the kind of creatures I may have in mind for V:

o V = Sets (ordinary categories)

o V=2={0,1} (posets)

eV = Rt U {+o0} = [0,00] with > (not necessarily separated

symmetric metric spaces)
oV =AbGp

¢ V = Ban (normed bounded (< 1) transformations)
Answering the question above: we should have
(88) ()—A(A, A)
This is all we need to ask. So we need to know what is the function
of two variables and the function of () variable in the realm where this
objects live.

Categories V should come equiped with a (well behaved) explana-

tion (definition) (understanding) of what is to be meant by a “mor-
phism of n variables” (n € N)

(A1,...,A,)—B
where A; € |V|, 1 < ¢ < n (when ¢ = 0, I mean literally the empty
string).
EXAMPLES. In Sets, for (87) just take the cartesian product

<A1,A2>—>B is Al X A2—>B
137

138 LECTURE 26. V- CATEGORIES (12/9)

and for the identity (88) take
()—B is beB

In AbGp,
<A1,A2>—)B 18 A1®A2—>B

and

()—B is Z—B

TENTATIVE DEFINITON OF MONOIDAL CATEGORY. When one has a
category V, let us write

M(V) = free monoid generated by the objects of V

and by
((Ay,...,A,), B)

the sets of maps from A € |M(V)| to objects B € V, such that
((4), B) = V(A, B)

and if we have

f
(Ay,..., A, = B
f
(Apit1y .oy Anyin,) — By
A A I B
< ni4notFng_1+1ls -0 n1+n2+-~~+nk> — Dy

and
<Bl, cwn ,Bk>—>0

one presumably wants a composition

(89) 9(frsee oy fo) (Ar oo Appggn,) —C

Asking to M(V) to be a category is asking a little more than this and
at the same time a little less (i.e. less technicality).
PRrROPOSE. Ask M(V) to be a category and to be monoidal in the strict
sense using the monoidal structure of | M (V).

In order to formulate this concept in the right way we need to
introduce some notions.

DEFINITION 13. Say that a category has a multiplication (is a
monoidal category) in the strictest sense if there are

1. A functor! @ : M x M— M

1The ® notation is to follow the convention

LECTURE 26. V- CATEGORIES (12/9) 139

2. Anobject I € M such that the following two diagrams commute

M><M><MM><®M><M

@ x M &

M x M M
®

M x M
]y &
id
M ! M
M x M

THE MONOIDAL A. Let A be the category of finite Von Neumann
ordinals (the old familiar 1,2,3,...) with order-preserving functions as
the A-morphisms, and with the followign + as ®: if & : n— N and
B : k— K, then define

L e if:<n
(a®ﬁ)<z)_{ﬁ(l—n)+1\f ifi>n

It is easy to see that ® so defined is associative.

Why we need this? We want to deal in a clean way with the sub-
scripts that arise in the formulation of equation (89). We want a mor-
phism

MV)|—A]

to be the effect on objects of a full fledged functor M(V)— A that
preserves @-products, and satisfies in addition:

Vn € |A], V1 <k < |A|, Vlength(A) = n, Vlength(B) = &,
Ve M), f:(Ag,...,Au_1)—(Bo,..., Br_1)
3! maps f;: (- A+)ica1(j)—B; such that f= fi® - -® fr_1

This is the cleanest way to express equation (89)
The easiest example of such a category comes from one that was
already a monoidal category, but there are other illustrations as well.
Such a V (already with M(V) information) is a “multilinear cat-
egory”. Multilinear categories are the most able recipients of (hom?)
homomorphisms.

140 LECTURE 26. V- CATEGORIES (12/9)

V-CATEGORIES.2 If V is a multilinear category, then by a V-category
X is meant a class X of objects along with a double indexed class
X (A, B) € V of “hom-objects” (A, B € |X|) whose composition rule is

(X(A, B), X(A, B))—X(A,C)
and unit maps
() = X(4, 4)
as provided by M(V) such that composition is associative and units
behave like identity maps.

If you are lucky V itself will be a V-category. Yo do not want it to
be randomly, but in such a way

M(V)(A,X(C, D)) = M(V)({A,C), D)

(note that we are seen in the equation above V(C, D) as an V-object).
Even better

MOV)(Ay, ..., A4.),Y(C, D)) = M(V)({A1, ... A ®C,D)
Now, V itself is a V-category in a completely compatible way.
CLOSED CATEGORIES. When V is a V-category in this way one says

V is a closed category.

Another way a category could be multilinear (without being a strict
monoidal category), is maybe

MWV)((Ay, ..., An),—)
is representable functor as a functor
Y —Sets
with A; @ Ay € |V|. Tt is very difficult to assure
(A1 ®@ Ay) @ Az = A1 ® (A ® A3)

They will be isomorphic, but there is no guarantee that they be equal.
This gives rise to monoidal categories that are on the references I gave
at the beginning:

1. They were defined in the article in Kelly, MacLane.
2. The second reference deals with ...
3. Why the proofs in (1) and (2) were so similar.

2Here we find again the story we already saw about natural equivalences: you
need the concept of natural equivalence, so you need the notion of natural transfor-
mation, but in order to state it you need the notion of functor and category. Here
is the same: in order to define V-categories, we need to go through many other
concepts before.

‘[PAS] 1oYS3IY
' Je qnq ‘urede Aem ouwres o)} Y[eM O} 9ARY PINOM oM ‘IXoN ‘poysiuy
SI o8e)s SIY) puUR ‘@IN}O9] SIY O} Ul URSS(oM SB POpua oM OF

151 (6/21) SATIODAIVD ~A "9 HYNILOAT

