«  22-26 July 2013   •   Samuel Eilenberg Eilenberg100 Logo Centenary Conference   •   Warsaw, Poland  » 

Eilenberg on epimorphisms among groups
...
    { xa−1b (= h0bHb) ,   if x = h0aHa ;
τ(x) = x ,       if xHaHb ;
    xb−1a (= h0aHa) , if x = h0bHb .
Write κτ: |G|! → |G|! for conjugation by involution τ — κτ(σ) = τ·σ·τ . Compare left-regular representation ρ: G → |G|! ({ρ(g)}(x) = gx) with the composition κτ·ρ: G → |G|! → |G|! :
For hH and xG, {{κτ·ρ}(h)}(x) = {κτ(ρ(h))}(x) = {τ·ρ(h)·τ}(x) = {τ·ρ(h)}(τ(x)) =
    { {τ·ρ(h)}(τ(h0a)) = {τ·ρ(h)}(h0b) = τ(hh0b) = hh0a = {ρ(h)}(x) ,   if x = h0aHa ;
  =   {τ·ρ(h)}(τ(x)) = {τ·ρ(h)}(x) = τ(hx) = hx = {ρ(h)}(x) ,     if xHaHb ;
    {τ·ρ(h)}(τ(h0b)) = {τ·ρ(h)}(h0a) = τ(hh0a) = hh0b = {ρ(h)}(x) ,   if x = h0bHb .
So κτ·ρ = ρ on H. But {ρ(a)}(e) = ae = a , while {{κτ·ρ}(a)}(e) = {κτ(ρ(a))}(e) = {τ·ρ(a)·τ}(e)
= {τ·ρ(a)}(τ(e)) = {τ·ρ(a)}(e) = τ(ae) = τ(a) = ba , so κτ·ρ ≠ ρ , and HG was not epi.