...
|
|
{ |
xa−1b
(= h0b ∈ Hb) , |
if x = h0a ∈ Ha ; |
τ(x) | = | x ,
|
if x ∉ Ha ∪ Hb ; |
| |
xb−1a
(= h0a ∈ Ha) , |
if x = h0b ∈ Hb . |
Write κ
τ:
|
G|
! → |
G|
! for conjugation by involution τ —
κ
τ(σ) = τ·σ·τ . Compare left-regular
representation ρ: G → |G|! ({ρ(
g)}(
x) =
gx) with the composition κ
τ·ρ: G → |G|! → |G|! :
For
h ∈
H and
x ∈
G,
{{κ
τ·ρ}(
h)}(
x) = {κ
τ(ρ(
h))}(
x)
= {τ·ρ(
h)·τ}(
x) = {τ·ρ(
h)}(τ(
x)) =
|
|
{ |
{τ·ρ(h)}(τ(h0a))
= {τ·ρ(h)}(h0b)
= τ(hh0b) = hh0a
= {ρ(h)}(x) , |
if x = h0a ∈ Ha ; |
| = |
{τ·ρ(h)}(τ(x)) = {τ·ρ(h)}(x)
= τ(hx) = hx = {ρ(h)}(x) ,
|
if x ∉ Ha ∪ Hb ; |
| |
{τ·ρ(h)}(τ(h0b))
= {τ·ρ(h)}(h0a)
= τ(hh0a) = hh0b
= {ρ(h)}(x) , |
if x = h0b ∈ Hb . |
So κ
τ·ρ = ρ on
H. But
{ρ(
a)}(
e) =
ae =
a , while
{{κ
τ·ρ}(
a)}(
e) = {κ
τ(ρ(
a))}(
e)
= {τ·ρ(
a)·τ}(
e)
= {τ·ρ(
a)}(τ(
e)) = {τ·ρ(
a)}(
e)
= τ(
ae) = τ(
a) =
b ≠
a ,
so κ
τ·ρ ≠ ρ , and
H ⊂
G was not epi.