contradictory requirements on the section   Distinct reals x, y in Xελ must lie at least 2ε apart: |x - y| > 2ε. For if instead 0 < |xy| < 2ε , then
f(Vε(x) ∩ Vε(y)) ⊂ Vελ(x) ∩ Vελ(y) = ∅, 
while
Vε(x) ∩ Vε(y) = {((x+y)/2, |x-y|/2)} ≠ ∅. 

  Thus each Xελ is at most countable, as claimed, and so, therefore, is
X = {X1/n0 : n > 0} ∪ {X1/n1 : n > 0} . [ >> ]