C.M.S. • Fredericton, NB • June 2010
Meditations on Arens Multiplication
    F.E.J. Linton • Wesleyan Univ. Math/CS Emeritus 
 
   We fix a dualizing object C and write A* = CA. The intent:
 maps  <X, Y, ..., Z> → A* = CA 
should amount to maps
 <X, Y, ..., Z, A> → C.
   In particular, there is evA: <A*, 
 A> → C 
corresponding to idA*: A* → A* .
   From Ai ,
 μ: <A1, ..., An> → A0, Arens’s 
μ‡: 
 <(A1)**, ..., (An)**> 
 → (A0)**
is the last of n+1 2-step †-stages: 
the steps of †-stage 1 are: (1) the compositum
 evA0·<idA0*, μ>: 
 <(A0)*, A1, ..., An–1, 
 An> → <(A0)*, A0> → C (step 1) 
 and
 
(2) the associated multinear
 μ†: 
 <(A0)*, A1, ..., An–1> 
 → (An)* 
(step 2).