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Chapter Zero

Categories and Functors
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O.1 Introduction

The main goal of this paper was originally intended
to be a proof of the Fubini theorem in tne context of
sigma measures on boolean sigma rings, without reference
to measure spaces nor recourse, therefore, to the Stone
space. Carathéodory [2] had already presenﬁed a
development of measure theory without measure spaces in
his posthumous book (which I had the opportunity to
translate into English), but he omitted any discussion
of a Fubini theorem. In the course of deciding where a
product measure should live, the realisation developed
that, while Carathéodory's guiding principles werse
sound, some of his definitions could be radically improved
(and the interdependence of many constructions morze
easily demonstrated) by judicious use of ideas from the
theory of categories and functors, especially the notions

of adjointness, representaoility, and structure. When

it became clear that the Fubini theorem depended on a
hitherto undefined sigma tensor product of sigma rings,
the need for a solid foundation in functor theory was
confirmed. The result is that the major portion of tiais
paper deals with functor-tneoretic foundations, some of
them previously unavailable, and only in the last chapter

is a measure first mentioned.

The present chapter develops those aspects of the

theory of categories and functors which are needed in the

sequel. The main theorems are those of sections six, nine,



and ten on the existence of functorial representations

and on the transference of structures. Tne first four
sections (§§0.2-0.5) éxpose, in definitions and exanmples,
for the most part, the rudiments of categories and functors.
The fundamental theorem on the existence of funptop}al
representations is proved in §0.6, where some applications
are indicated. Slomifiski's results [26] on equatioﬁally
definable classss of abstract algebras with infinitary
operations are presented in §0.7 , where it is proved

that equational categories havs diréct sums and that
equational functors have left adjoints. injectives and
projectives are discussed in a setting Jjust broad enough
to permit application to eguational categories in §0.8.
The construction of the pointed category canonically
associated to a category with a sufficiently good left

zero object (a productive omne) occurs in §0.9, where

is also defined (after Eilenoerg) tane category of structures

over one category with values in anotner. It is proved
there that there is a canonical transference functor from
the category of costructures (definition dual to that of
structure) over a catvegory with productive left zero with
values in a pointed catsegory to the category of costructures
over the associated pointed category. The category of
structures with values in an equational category is
reinterpreted, in §0.10, as a certain category of functors
from a small category canonically associated to the given

equational category, and a theorem on the transference of



such equational structures is proved.

Chapter One applies the functor-theoretic foundations
to various categories of lattices, notably boolean sigma
rings and boundedly sigma-complete lattice-ordered
vector spaces and algebras. Frequent use if made of the !
fact that equational functors have left adjoints.

After basic definitions and their immediate consequences

are presented, in the first two sections, sigma tensor
products of sigma rings are defined in §1.%, and proved

to exist; §l.4 contains the proof that tedsoring is an
exact functor. These results were announced in [19] .

The problem of injectives and projectives in the category
of sigma rings is taken up in §1.5, where several
necessary conditions for the injectivity of sigma rings

and for the existence of injective sigma rings are obtained.
It is possible that these criteria can be used to prove

thé nonexistence of injective sigma rings. The machinery
needed for analysis is set into motion in §1.6, where the
universal definition for the module of step functions over
a boolean ring with values or coefficients in a module
appears. A number of results are proved tending to

indicate that the module of step functions has as rich a
structure as the module of coefficients. It is proved

in §1.7 that the Borel functor (from the category of sets
with Borel structure to the category of sigma rings)

is sufficiently well behaved that the transference of %

equational structure theorem is applicable in a lipited way.



As soon as the relevant (equational) categories of lattice-
ordered vector spaces and algebras are defined in §1.8,
the extraordinarily ridh costructure on the sigma ring

of Borel sets in the reals can be descrived; this
description, using the transference theorem and the usual
rich structure of the reals, and a comparison of the
real-valued step functions on a sigma ring with the
lattice-ordered algebra of sigma homomorphisms from the
Borel sets of the reals are provided in §1.9. These
results are of utmost importance in ﬁeasure thneory.

Stone spaces were necessarily introduced in the proof that
the Borel functor is reasonably well behaved. Their

only reappearance is in §1.10, where they are used to
prove that there is a largest boolean ring containing &
given boolean ring as a dense ideal. The rdle they

play in this connection is not crucial, nowever, as it is
in connection with the Borel functor. Various properties
and alternate descriptions of this largest dense extension
are provided in the remainder of §1.10, for use later in

the description of the dual of Ll'

With Chapter Two, we final;y come to measure toeory
proper. The various kinds of (real-valued) finite measures
are described in §2.1, where it is proved, as an immediate
consequence of the definition of step functions, tnat tae
finite measures form the dual space of the (untopologised)
space of real step functions, while the bounded measures

form the continuous dual. §2.2 presents canonical



projections from the space of bounded measures on a sigma
ring to its subspace of countably additive measures, and
from the space of countapvly additive measures on a complete
boolean ring to its subspace of completely additive (normal)
measures. In preparation for the fundamental tneorem of
calculus, the next section discusses measures inat need

not be finite and defines the supremum and infimum functions
.associated to & homomorphism from tne Borel sets of the
reals to a sigma ring. The fundamental theorem of calculus,
incorporating the mean value inequalifies, the Radon-Nikodym
theorem, the chain rule, and a change of variables formula,
occupies §2.4. The dual of L, is completely described
in §2.5, using the material of $$2.4 and 1.10. The Fubini
theorem, out of which this work arose, fittingly concludes

it in §2.6.

There is quite & bit of literature on material related
to ‘the present work. iost prominent, of course, are tie
books of.Carathéodory [27], Sikorski [257] (waich contains
an exhaustive bibliography), and SlomiAski [26]. In [13],
Haimo compares the Stone space of the direct or. inverse
limit of a family of unitary boolean rings with the inverse
or direct limit of the Stone spaces. His result that the
Stone space of a direct limit is the inverse limit of the
Stone spaces was later very elegantly proved by Wallace (55,
and the corresponding result in tne other sense, which Haimo
did not notice, that tne Stone space of an inverse limit is

the Stone-Cech compactification of the direct limit of the

e e - .-



Stone spaces, is proved quite easily in §1.7 . The work

of §2.2 is closely related to -- indeed, inspired by =--

the work [10] of Gordon and Lorch. A consequence of our
description of the dual of Ll is half of the main theorem
(Theorem 4) of Thorp's recent article [50], wnich was
called to our attention some time after the program leading
to this description was realised. The fundamental theorem
of calculus, as presented here, is essentially due to
Carathéodory [2] . Spaces of sigma homomorpaisms from

the Borel sets of the reals to a sigma ring play tae crucial
réle in Kakutani's characteristation of abstract (L)-spaces,
in Bohnenblust's characteristation of abstract Lp-spaces,

and elsewhere (self-adjoint operatorsl), but they seem
always to have peen used, except oy Goffman, as a heavy
technical device To obtain a representation as functions

on a topological space (the Stone space, in rfact, of the
boolean ring involved). It nas bDeen our aim, in contrast,
to minimise the rdole of the Stone space, since its use

tends to cloud some of the naturality of the proceedings.

A word should be said about the "category" of Banach
spaces. The usual novion of a direct product (wita sup
norm) or of a direct sum (with Li norm) of Banach spaces
fails to be the direct product or sum in the usucl category=-
theoretic sense. Yet it is the case that, when the
continuous linear transformations gﬁ(B, C) from one

Banach space to another is viewed as a Banach space, there

is a canonical isomorphism



ZN(B, X B;) & X EN(B, By) ,
icI i€zI

where the product is in each instance the usual (sup norm)
direct product of Banach spaces. This suggests that tae
definition of autonomous category given in (0.5.13) should
be modifiable to take care of Banach spaces. Not having
carried out this modification, we have thought it best to
curtail the description of functoriality where Banach
spaces are concerned, notably in Chapter Two. TFortunately,
it is algebraic structures that are of predominant
importance in tne development of our théory, ratner than

questions of norm.

It has Deen necessary to omit consideration of other
matters worthy of interest. Only the oriefest mention is
nade of the fact that by use of thne Borel sets of tine
complex numbers, complex measure theory can be developed
in’ this context. The spaces Lp (l#ﬂp# ©) &nd the
phenomena associated with them are essentially neglected.
The Ll convolution theory arising from a sigma measure
on & sigma ring sequipped with the costructure of a group
is totally absent, yet readily available with the naterial
here presented. Finally, one should like to obtain a
non commutative analogue of the whole theory, replacing
boolean rings by a good category of (mot necessarily
distibutive) lattices. The fundamental problem, once Tiae
right class of lattices is selected, is to find one playing

the same role there as the Borel sets of the reals do hers.



The recent thesis of Holland at Harvard, waich, I an
informed, will soon be bublished, apparently initiates
this theory with a Radon-Nikodym theorem tanat I nave not

s8éen.

It is my pleasant obligation to thank the National
Science Foundation for four years of unstinting financial
support, Drs. liichael Barr, Peter Freyd, and Haim Gaifman
for several enlightening cénversations, Mr. Aaron Galuten
for the opportunity to translate [2], and Prof. E. R.

Lorch for his constant interest and unfailing encouragement.



0.2 Cuategories

A catepory gi consists of the following data:

(0.2.1) @& elass of indices A, B, ses}

(0.2.2) a class of doubly indexed sets a(a, B);

(0.2.3) a class of triply indexed functions

P(A)pe ¢ &4, B)X A3, C) —> A4, C) .

The indices A, 8, ... are called the objects of

\

the category 4 ; we may often write A E:

A(a, B) 4is called a map or morvhism

An element £ &
of the category 4 4, o an & -morphism, more specirically,
an A-morphism from 4 to B ; we may oIten write

f: A—>32 for £& A(4, B) ; if A and 3B are

Hy
~

irrelevant, we may occasionally write simply
m q a5 DR = A
The class of functions P(4 )y

composition rule in 4 ; if f: A —> B and g: 2 —> C ,

we generally write g*f or gef for @(4)..
These data should satisfy the following axioms:

(0.2.4) (f-g)eh = £+(5°h) ;



(0.2.5) 4(a, B) is disjoint from A(4', 3') wuless

A= A4A' and 3 = B';

(0.2.6) Tfor each object A there is a map et 4 —>4
such that f-eA_='f and e,*8 =8 for all
f: A=—>8, all g: B—>A4A , and &ll odjects 3B .
(O.2.7j Lemma. If A4 is & category the elements e
are unique. ZProof:
If there are two, say e, and ei , then

e,e! = ¢! .

F=9 Fe Y Fe9 A%

The element e. 1is called the identity map of A
F-9

and will generally be written as id; .
'z

We proceed to give some exanmples of categzories.

(0.2.8) S , the category of sets. An ooject of S _ is

_———

4]
16
w
ct

an J-morphism from & to B is

defined on the set A with values in the set 3 .

composition rule is the usual one:

(0.2.9) 0O , the trivial category.

one object and only one map (the compositiua rulec is forced)

?

(£e3)(x) = £(g(x) 3

This catepory has only

L]



the mup automaticelly being the roguisite idcavity mxp.
(0.2.10) The category associatcd to a partially

ordered set (P, /). ke odbjects of this catepory are

8]
©

the elements of P . There is at most one zap frou o
object A to another B , and the map is present 1ft

A é B « The defining ﬁroperties for a partial order
ensure that the axioms of a category are‘fulfilled. 3
especial interest will be the catezory, denoted ¢ ,
associated to the setv {O, l% equipped with the partial
order 0/ 0/ 1/1.

(De2sll) If & 1z a categoxry, define a new category

A% Dby specifying tne oojects of 4™ <To be the objects
of A , the maps A*(4, B2) +to be the maps A(3, 4) , and
the ition rul P fd) T T o Taus
the composition rule @(A )ypg TO be ‘?\z)om . Taus
if the composition in 4 is denoted by a dot, wiile that

in A* is denoted by a star, the last specification

becomes g*f = f+g . The category 4A* 1is called tkhe duzl

3

category of A , and is very useful. The passage from A
== - =

r




to A* 1is rewminiscent of tue pﬁssage.from a monoid to

its opposite wmonoid, which has the sume elements out th

"opposite” multiplication. It is clear that 4i** = 4 .
(0.2.12) If A and 8 are categories, define a

new category AX3 by specifying the objects to be the

pairs (4, B) witn 4 & ;L and Bg B . A map from
(A, B) to (C, D) is by definition a sair of maps (L, &)
with £f: A—>C and g: B —» D . Thus

@Xx3)((a, 8), (C, D)). = 44, C)X (3, D) .
The coupositiun rule is briefly ziven by the formula

(£, @)(£', g') = (£.£', 2.5')

igkii is called tre direct product of Tne categories 4
and 3 .

(0.2.13) If L 1is a category, define a new category

M = Mor{d ) as follows. An object of M is a mup of 4

<L I Ao — Al aad g BO —D Bl are objects of

(i.e., are A-morphisms), an li-morphism g: f —> g :ic

by definition a pair of

A-morphisms, £ = (4, ¢ ) wizh



s s

By G:léﬂAi, Bi) (i = 0, 1) of such a nature that tae
diagram of _A-morphisas
d 4
By et By
commutes, i.e., that g-¢0-=£&-f o+ PFinally, the composition

may briefly be described by the formula,
(ﬁo, ﬂsl)'(¢os ¢l> = (:’50'9501 Jdl'¢l) .

An li-morphism g: f —>g 1is also called a trasnsforrmation
p——

from (the A-morphism) £ to (the _i-worphism) g .
(0.2.14) If A 1is a category and C 1is a class of

objects of A, the full subcategory of A generated

by C 1is the category whose objects are the objects in
the class C and whose morphisms are all the A-morphisms

between them.



De% Xunctors
4 functor F from a category 4 to a catepory £
consists of the following data:
(0.%.,1) an zé;indeked class of objects of X , i.e.,
an object F(a) &€ X for eéch IA. c A
(0.3.2) a doubly inde;ed class of functions
Fygt A4, B) —>X(F(a), F(B)) .
The X-morphism Ekb(f) (for £ &€ A(4, B)) is
usually writsen simply as F(L).
Tliese data are subject to tne following axiols:
(o.la.':s) F(id,) = idacay
(0.2.4) F(ge£) = F(g) F(L)
If datum (0.%.1l) is adcompanied not oy (0.%.2) vut by
(0.%.2*) a doubly indexed class of functions
B A4, 5) —= X(F(B), F(4)) ,
and these data satisiy (0.5.3%) and (instead of (0.3.4))
(0.3.4%) F(g+f) = F(£) F(3)
FAB

(where again F(f) means (£)), we call ® .

r

contravariant functor from A to X .




(0.%.5) Zerzz. If ¥ is a (possibly couatravariant)
functor from A to B3, and G is a (possidly
contravariant) functor from B to C , then the duta

GF (&) = G(I(A)) , GF (£) = &(T(£))
define a (possibly contravariant) fuﬁctor from & to G ,

called the couposite of G with ¥ and denoted GC-F .
]

G*F is contravariant iff precisely one of F and G is.

The identity function from A& *to is a countravariant

.'X*
_ ——
functor, composition with which converts every contravariant
functor from (to) 4 dinto a functor from (to) a* (and
conversely, since 4 = i** ). PYroof: immediats.

Next we present cone examples of fuuctors.

(0.3.6) The hom fuanctor for a category 4 1is the

functor, classically denoted dom.::i*ﬁéi-—ehéi s Waich
is prescribed by tnae data

HODIA (As B) =--‘;'*(-‘:"*1 B) )

e

Hom, (£, h)(g) = heg-f

P
:fa-
=

(i.8., for £ & 4&* i') = A(A', 4&) and h & Ai(3B, 3'),

== =

ey



Homﬁ_(f, h) is the functivn (i.e.,. S-worpnism) from
A .

A(hy B) to A(A', B') wnich sends g (in (4, 2))

to hegef (in A(a', B')). We also write Hom, = i(_,_) .

(0.%.7) The partial hom functors for a cateyory S .

Fix an object 4 in 4 . Define a Iunctor 4. i & —>3S

by prescribing -=AA(B) = 4(4, B) and __.__}_A(f) = aid., £)

-

—

(we also write A(A, £) for A(dd_, f)). 4 ., sometinmes

also written h, , is called the covariant or lecft hom
F=9

functor defined by A . The covariant hom functor

<t

A*

s Y s

: A* —>» S 1is called the gomtravariant or righ

hom functor defined by 4 and is also denoved by

A or hA when thougat of as a coatravariant Ifunctor

from 4 to O . It 1s specificd by viae data

p*(B) = 4%(B) = 4%,(B) = 4*(4, B) = A(B, &) ,
n(f) = AN(f) = 4%, (8) = ax(4, £) = AL, &) d;fé}a{f, id,).

(0.5.8) The functorial hom functors. To describe
these functors, a general observation is in order: if T

is a functor from to =£: and G dis a functor from

Y

B to X , there is a fuactor, denoted FXG , from 4AX3

ak



cu
to XXY¥ , woich is siven by
= —
FKG)(L, 3) = (F(L), G&(B)),
o~ Y ’
(FRG)(E, g) = (F(£), G(&)) .
Now fix a fuactor F: B —> 4 . The left functorial hom
functor defined by F is the functor
hot B*X 4 —> 8
which is this composition:
BEX fh ———— 1* K L — SN,
E=hp Y oy Xos T y =
J.)\l 58 :__‘i.__ e T
The rignt functorial hon functor defined by F is the functox
h¥: A*A 3 —>3
which is this couposition:
BT R B ety BIR L ey [
Id, «xF "R 3
Sicilar definitions can de made for contravariant functors & .
(0e%.9) Natural transformations; the sourece and
target functors. Xorm tine cabegory lLor(i of _i-morphisms,
as in (0.2.13). For i = @, 1 , the data

T,(f: Ay =D 4)) = 4,

Ti((ﬂ'os ﬁl)) = Fsi



define two functors T.: lor(

i ) —>A (i'= 0, 1) called,

]
ad

respectively, the source, or domain, functor and te

target, or range, functor. XNow let T: B —>lor(i) be

any functor. By composition, we get two functors
=

F, =T..T: 3 —>4 (1 =0,1) ,

and T is called a patursl transfornation from FU to

F, . Recalling the definition of the category v (0.2.10),

¥

form the category A whose 00jects are the functors from
v to A and whose maps are tne natural transformations
between such functors. By assigning to each functor

F: ¢ —> 4 the 4-morphism F(O / 1): ¥(0) —>F(1)

and to each natural transformation of such functors the
corresponding transformation of A-morphisms, we obtain

a complete identification of tne category .i.or(4dA) with

J

the category :iv . PFirally, one can easily see thut a

natural transforamation, e.g., a functor from B to llor(4d),

A ¢'

being also a fuanctor from :g: to A7 | can equally well

be thought of as a anctor from 3B X .l, to 4 4 and coaversely.

»

. e ———

I



0.4 Icuivalences

(0.4.1) amap I & A(4, B) 4is called wn guui-

valence, and tie objects A and B are saia to oe

equivalent, if there is a map g & A(38, &) such taat

g+t = idA and | feg = idB 2

Such a map & is ncecessarily unique; one writes g = f-l
o)

A natural transformation T: ¥, —>» T petwzen tw
0 o1

functors from & to 3 (i.e., & fuanctor from A %o

Mor(3B)) is called a (natural) ecuivalence, and the

—

functors Fa and P, are called (nsaturally) equivalent,

if, for each object & in &, the J-morpihisi
¥ i b 1 N
T(Lh): Py(a) —> P (a)
J 1
is an equivalence (in tais case the a-indexed class

- . 9 5 "“l .
of DB-worphisums PLAD defines a matural transioraation

denoted T7F from F, to F, wnich is aguin, of course,
a natural equivslencel A Zfunctor F: & — 3 1is called
an equivclence, and t.ue categories 4 and 5 ure said to

be eguivalent | if there is &« functor G: 3 —>> .. such

that F+G and GF are naturally ecuivalcnt to thre



respective identity functors id, and idB. If in fact

there is a functor G for which F.G = id; and GeF = id, ,

then F is called an isomorphism and we write G = F'l. {

The G for an isomorphism F is unique; the G for an
equivalqnce is.unique to within uniqﬁe natural equivalence.
One of the goals of functor theory is a characterisation
of those functors which are naturall} equi?alent to one of
the hom functors described in (0.3.6), (0.3.7), and (0.3.8).
The first step in this direction is Yoneda's result [3¢]]
that there are no more natural transformations between hﬁ
and hy (cf. (0.3.7)) than there are maps between B and 4 i
and that each natural equivalence between h, and hB arises
from an equivalence betwsen B and A. The presentation
below, included for the saké of completeness, is adapped
from lectures at Columbia by Albrecht Dold. Compare also i
Freyd (¢ , pp. 108-112].
it Ti: é ——9»@4' is a natural transformation from

Fi-l to Fy .(i-l, &) ; defina ToeTy s _A_—+§J' y &

r



natural transformation from FO to FE sy OF
2009 (4) = T,(a) 1, (4)
| Te-Tl(f) = Tz(f)-Tl(f) .
(Thus, if o is & natural equivalence fro; ¥ to G,
and T7" is defined as in (0.4.1), 27+.m 45 the
: "identity" natural transforiation from ¥ To ¥ anad
7.p~1 is the "identity™" transformation from G +to G )
Take 3 = S and let A and B Dpe objects qf A o Ve
have alfeady defined t.ue functors QA . hﬁ P a4 —» 3
for f < i(4, B)

vy W8 now define hf y
transformation Iiro

vy
dbd

2 natural

hy  to a, (note tune invers on)
by h-(C) = &(f, C): hB(c)-;§>§(B,c)-—ﬁ>é(A,c)—;;b;ACC)
ho(g) = &(f, 3) .
(0.4.2) Lemna. ZIet ¥: ¢ —>g and & & 3,
Then the class of all natural transformations frox ;&
to F forus a set [EA‘ F] - The functor fronm 4 to
S which assigns to 4 thg set EhA 5 Fl and to
by

: 4 —> B the function [hf v F]: [h



defined by

[ney ¥](2) = 7om,
is naturally cquivalent to . ¥ . Proof:

We content ourselves merely to show that thcre is

a l-1 correspondence between [ha § E] aﬁd F(LA) = Pa .
This will prove the first assertion, and will leave little
doubt concerning the second. Define a function

3:FA —(n,, F)
by defining, for eacn element a of PFa , a natural
transforﬁation g(a): Ly =—> & as Jollows: 1for X A

2(a)(X) : n,(X) —_ T
is’ the lunction sending f (an A-morpaism from 4 to X)
to (E(a)(X))(£) = P(£)(a) (i.e., evaluatibn); cizilarly,
define a function € : Ehi y, T —>Fi Dby evaluation at
at the identity, precisely, @ (T) = T(a){id.) (recall
that ©T(d) is a functioa from hA(A) « ACA, &) to Pi).
Ve have imniediately from the definitions of 2 and
and from (J9.%.%): if a is aa element of Ta, then

C(@(a) = (@@N(a)(did, ) =F(id )(a) = id, (e) = a .



i

Having thus shown that W& is the identity on Fa

we proceed to show that Y& is the identity om Loy :‘3

It suffices to know that &+W(T) = ? for each transformation

T3 hA —> I . PFor this, it is enougzga to veriry tnat

(0.4.2') B(Y(DIX)(E) = T(X)(L)

holds for each X € 4 and each f € h,(X) = &(4, X).

And indeed, by the definitions of & and ¥

3

(0.4.2%)  E( 2 (2NX)(£) = B(D(A) (3, D(X) (£) = F(E)(2(A) (14, ),

and, since T is a natural transformation, the diagrem

ﬂ." (:‘L) ~ .".‘in.
|
by (£) | #(2)
) v
h, (X) ==&y 7%
44

commutes, wnhnence the first ecuality oelow:

(0.4.2™) FOEI(T(A)(da, D) =2(L(n, (£)(dd,)) =

T(X)(2)

(the second equality is by definition (0.%.7) of h&(f)).

s

Combining (") and (™), we get (') as desired.

Replacing 4 by 4* , we obtain from (0.4.2):

(O.4.%) Corollary. For any functor T:

there is a 1l=-1 correspondence [ha § F] S FB

.';‘;*"-'—};;:‘j,

wnich is

e R,



& natural equivalence bf functors a* —>» 5.

Using (0.4.2) and (0.4.») we votain a result, an
immediate consequence of wnich is the adveﬁtised Yoreda
statement.

(O.4.4) Theoren. The three functors from A*X 4L
to S wnich send (4, B) to

Led, o®), a4, B, Log, b

respeétively, are nadurally equivalent among themselves.

Proof: simply comdoine all thne natural eguivalences

and identifications &t hand:

(0.4.5) Corollary. The function 4i(4, B)‘_f>x:h3, h,-]
which sends f to hf is a natural 1-1 corre rondence
under which equivalences correspond to natural equivalences.
Proof: It is clear, to begzin with, that h, = 8(f).
Naturality then follows. 'from (0.4.4). The last assertion
follows from naturality.

The discussion of functors naturolly ecuivalent with

hom functors continues in the next section.




Q0.5 Rep;esen;at;ons and Adjoints

(0.5.1) Defimition. If the functor I: 4 —>5
is na.-t'tiralljlr' equivalent with a left hom func.tor .h.t. , 
if is left reﬁresentable,.and A is a lsft represenﬁgfion
for F. If F is a contravariant functor rfom -é- to
S and, viewed as a fuactor ffom A* to 8 , it is
left représentable by an object A, wé obtain a natural
equivalence betwesen the contravariént functors F and hA
froml 4 to § : such a contravariant functor is called
é;ggg representable, and the object A a right represen-
ta'bic;n for F . If the functor G: 3*X4 —>8 is

left
naturally equivalent .with a functorial hom functor hF

(for some F: B—>4), G is called left functorially

representable and F is a left functorial representation

for G . If G is naturally equivalent with a right
functorial hom functor h- (for some E: 4 —> B), we

say G 1s prighbt functorially representable and E is a

right functorial representation for G . Tinally, if G

has both a left and a right functorial representation, say



ay A and

s

Cory

L)

e

caldoins

B , respectively, then I 1is called a lcrst

a »i;ht adjoint for F .

4 and E

The first thing to notice about this definition is
hav 1f a functor F: & —> 3 has two left rerrescatations,

B , composing the natural equivalencec between

and P and betweecn h and F ields a anatural
B

uivalence bdetween h; and hg which by (0.4.5)

s bl

tween 4 and B . The

esponds to an ecguivalence be

ies to a contravariant fuactor, and so

-
ke

same argument appl

¢ nave proved

(0.5.2) Lemuz. 4iny two representations (left or right,

s' applicable) for a (zossibly contravariant) functor are
rquivalent.
Let F: 4 —>3 and & € A .

(0.5.3) Definition.

the Yoneda

“-~nt a &€ PA that corresponds, by
valence, to a natural equivalence from h. to ¥

LV E

Clearly a functor is

.5 called universal for F .
~cable iff there is a universal elenment for it.

o~y
PR &

W/ith this notion, we can refine (0.5.2) as follows.



-

W e - - 5 oy ' " .
(0.5.4) ZEropositi.n. I a & T is uziversul

for F and a' E: FA' is arbitrary, tiuaere is & unigue

aorphism f£: A —> 4' such taat F{f)(a) = a' ; moreover,

bl

the map f 1is an ecuivalence iff a' is also uaiversal

ey

foer P . Proof:

Y

2 : % A A * x o o i
The composition TFa' = [h,,. . F] = [h“ ; :1_._\ = Ai(4, A')
Fz Fey

assigns the required f to a'. (0.4.5) finishes the proof.

In the next section we shall discuss functorial
representations Iurtiher. Lere we present the most
itportant examples of representations. For Tthe rest of

this section, we fix atteation to functors from a category

(0.5.5) ILet (Ai)i b be a fanmily of objects in

A indexed by a set I . A representation for the functor

ct
ry

to S waich assigns to B é: A

i>€<I 4(455 3)

is called a direct sum of the family (Ai)‘ , and is
e

cI

raoted % ;"i .- The uaniversal elewent, waica is in
iec I

e B A o i



- é(Ai @ 4;),1is called the fuaily of ganonical

::; L | i e: i€

injections of tuae sun;unds.

(0.5.6) Again let (4. )1 €1 be a family of odjects
indexed by a set. A representation of the coutravariant

funictor fronm to £ which assigns to an odject 3

-

the set ,:><:é(B’Ai) is called a direct product of the
i€I -

s. 's and is denoted ;K: Ai " The universal clement in

i 4 -

He=

A( )(: Al,.u ) 1is called the family of cznonical
i€l i€1

(0.5.7) Let Q be the zero category of (0:2.9),
interpreted as a subcategory of § Dy talking for the
ubnigque object a set consisting of single point o .

Let <Z denote the only vossible functor from to O .

'
Iy -

o

cfeult 4 1s both a functor and a contravariant furnctor.

't -epresentation 2z for Z is called a left zero

-

i

> of 4 , a right representation, 2y v @ right zero

[

icet of A . By (0.4.4) there is exactly one map

©

% 7+ to an object A , and one map sz: A —> 2z

A i e e . A A P B e i

7 A s s



t.ece maps must be coupatiople witah

By tiheir unigueness,
all A-morpHisms, i.e., if £ & a4, B) , then

and zBRof = ZRR W

In particular, szq_= ZzLR: 21, -—?-ZR , and this
is an equivalence iff there is a map fron 25t o Zq -

map

in case Zp and zp are *uivalent,‘either is referred to

siiply as a zero object of 4 , and call 4 a ggﬁgﬁgg?
category.with zero. Letting S, denote the category of

crving functions,

sats with base points and basc point prese
is called a pointed catesory if, where

a category 4
Ig: S, —> 8 1is the functor waick "ignores" the base point
can be found such that

and
each ‘?(1})&30 is bilinear.
m;;;;qxzxxm@ catezory witih zero is 2 poiated catepory.
(0.5.8) Assume 4 is pointed and let f c A4, B).
4 representation of tre functor from 4% to 3 waich

C & 4 the set

ker(4(C, £) = ig/g €40, &), g =0}

susigns to



(here O denotes the base point of each hom set) is
‘callqd a kernellggg f , and is denoted ker f . The
;niveréal element is an element k € A(ker £, A.I)
‘having the .property that f+:k = 0 and whenever r-g = QO

for g € 4(C, 4), T3 € a(C, ker £) such that the

' 5 ker £
diagram \\\;&h comanutes.

This is a siuple restatemént of (0.5.4).

(0.5.9) 4Again assume 4 is pointed and let
£ & 4(A, B) . A representation of the functor from
4 to S wuich assigns to C in 4 the set

ker(a(£, C) = {8/ € 4(3,0), gt = o}

is called a colkernel for f and denoted cok f or
coker £ . The universal element has an interpretation
similar to that given above for kernels (with arrows
réversed, since the cokernel of and A-morphism is a
kernel for.the corresponding &f—morphism).

In the next examples we will deal with categories

of sets. a4 functor F: A—>3B is faithful or an



immersion, if it is locelly 1l-1l, tihat is to szy, if each

fuuction FAB:

-

to hove the structurz of B if {tiere is an iigersion fron

A to 3 . A is a concrete cate;ory, or a gcateuory of

if it has the structure of £ . An imuersion by virtue
which & 1s concrete is usually keld fixed throwghout

and denoted by "absolute value bars" or not at all; for

A (resp. f£) E i, u&\ (resp. |fl) is thoupiat of a

the underlying set of 4 (resp. tie uaderlying point

function of £).

(0.5.10) Let be a category of scts and let

-k

S be a set. A repres:zutation for the fuactor from 4

which assigns to an odbject A. the set 8 (S,|Al

ct
O
L]

s{A, B) —=>3(FA, 3) is 1-1. 4 1is said

is a free object gencrated by S+« 4 free object enerated

singleton is the same as a left representation for

the structurcl iammersion | |, and is called a gezmerator

s more generally, any ocjsct G for wnich hG

"—4.
s

in

is oan izmersion is a generator. If ®S dis a frcc odject

r



B T e ——

1

LS s b

ccnewated by S, the universal clement, waickh liecg in

ol the j€neratode;

5

§(S,l§ﬂ) s is called the inclusioc

“caoting it by k , one easily sses tnat to each

-

5 & 8(8,]) there corresponds a unigue J' € 4(&S, A)
such that [j‘]-k =3 € §(S,]A\ s Wwnich is eszsnvially
the usual "extension to a homomorphism" conditicn.

(0.5.11) ILet 4 be a concrete category, B &

Ny
-

and f an equivalence relzation on lB\ « Definc a
functor from 4 <To S oy seading the’
object A %o the setv i"f/ £ e 4By 4), = f‘a =5 |f}(a)=\1\ (b)}.

A represertation of this functor is decnoted B/f and is

called a zuotient of 2 oy (mod) ﬁ ; the uaiversal

element, in 4(B, B/e ) 4 is called the gononical projection

onto the cuctient by f y or dividirz by e . Iz the

& pointed concrete category, dividing by eguivalence
rolations is closely allied to forming coikernels.
(0.5.12) Let 4. be a category of sets and B8 an

object of an arbitgary catesory B . An- A-structure.on



£
(;\

the object B is a contrava_z:iaht functor l_:naz B —>4

sﬁch tl.mt: \1_}3\ (i.e., l \-QB) and hP® are naturally
equivalent. Duelly, an é.-—costru.cture on B is a
functor hp: B —> 4 such that \1&5\"-"- hy . ?or
axample, if SG denotes the category of monoids and
monoid homomorphisms, to saly that-an o"g;ject B in B
has an SG-structure involves, for each X in 38 , a
function m(X): B(X, B)XB(X, 3) —>3B(X, B) , all of
wrich form a natural vransformation m; assuming that
BAB exists in B , this natural transforration is an
e;ement of {h‘B"B, hBl y hence corresponds to an element

of B(BXB, B) called the multiplication on B .

Similarly, an SG-costructure on an object 3B corresponds,

s7se B®B exists in 3 y Yo a comultiplication, that
3, & B-morphism B —>B@B . The situation will arise,
. the main body of this work, of an object (in a concrete
';tegory).having the qostructure of a lattice-ordered

goneralised Banach algebra. The numper of stiucture maps



l¢ awiwardly larze. ‘Yne object is tae Looleun rin, ol
Sorel sets on the real line. Other exaunplses can «lso
bz concocted.

(0.5.1%) A concrete category 4 ecquippable with

=

A\ = Hom,

np

a functor h: A¥X A —> A& such that \

is called autonomous provided the composition rule

QL), can be lifted to a "bilinear A-morphisn®
( =4 BC = ’

a - 14 o . . Lo = o —
i.e., is the underlying point function of some A-morphism

A(a, B) —> h(u(®, C), (4, C)) and of some A-morphism

(B, C) —> n(h(4, B), n(4, C)) . Ixeuples of autonomous

=

s

categories are provided by S , S« , AC (the category of
abelian groups and group homouorpaisms), and Zit (the
category of (say) real normed vector spaces and cortinuous
homomorphisms). . In an autonomous casejzory, thncre cun be
L a novion of tensor product. Namely, let 4 and
oe two opjects of an autonowous category L , and let

b: A =—> 8 Dbe the functor sending X <o

o(X) = a4, b(8, X)) () a8, nla, ),

S E—



the intersection occurring in S(lalx (8], \X[). 4

representation of b is called a tensor product of

with B and is denoted A®B, or, wihen there is

confusion as to which category is involved, 4@ 3B.

It should be observed that the natural isoniorpihisus
(in 8 ) between |A|x|B| and \B\’T\Al and oetween
(\Alx\B\)x 1C| and jal ¥ ({B{x(Cl )" iﬁduce natural .
isomorphisms (ina )

A®B = 384

The first of these, when B = 4, iz celled the twistings

autororphism of A& A4 ; in view of the =zecond, we shall

4 r

In each of tae gatezories S «y 4G, LN, tensor products

Lt

(for this is due to Schatten E.-(.’.)J and Grothendicck

(35

. — . 0 o » P .
y/4, Chap.I, 81,n% 1,Prop. 1, p. :a]). The functor b assiyns

to X the socalled bilinear mops from Ax3, aad the

miversal elewment has the usucl universal progjerty of



"linearising" biligear maps.  Teasor nroducts in otne
categories than autonomous ones all arise fron
suitable notion of bilirzearity or by co:pﬁrison ¥ith
a related autonomous category (see $l.% for exanrples,
and §1.6 for a tensor product like pairing of tw

categories to a third).

o 8 . e g L o

e o ———
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This section is devoted in the main to tile proof of

a proposition which gives ratier easily verified criterion

for the existence of a functorizl represerntation, a

criterion, moreover, which will frequently be used in

thic next chapter, often without explicit reference. Lne

proposition in gquestion is probably well knowan, bdut I

have never seen a proof presented. Incidentally,

application of this criterion to some of tihe examples of

he previocus section give examples of functorial

(0.:6.)) Proposgition. I G is a fuzétor fron

4 to 8, let 6(B): &4 —>3 (foreach 3 & 3)

»te the "partial" functor dcfined by

6(3)(a) = 6(B, &) , 6(3)(£) = Glidy, £) .

ssume that each G(B) is representable, say with

presentation Fy and universsl elegent i e G(B)(Fy) .

n T extends to a functor B* —> 4 , and the universal

L3

R

T —

S

S —

s e £

e



clements iB define a natural eguivalence of 1, with G,

e

making F a functorial repXésentation of G . Proof:

Proof that F is a functor. ILet of € 2(8, 3').

Using (0.5.4), define b;t € 4(Fg, Fp) to De the

unigue 4-worphism for which the function
G(B')(F,) : G(3')(Fg,) —>G(B')(Fy)
sends iB' $0 the same elesent as the funcfion

6(%, 18g ) G(3) () —> G(E' ) (Fy)

sends iB . That is, f = 34 is tae uaigue solution

f of the zguation

Y

3(is.)

2
-

kY

G(KX, 1d, )(iz) = G(B')(

I 32

to

o |

In order to see that this delinition makes I a functor,
we must sée that F,. = F oF (contravariance!)
ﬁ'& £ (3

(- B(B', B") , and that £.. = 3d- . The lutter
b ldB 3

l'JJ

tement following inuediately Ifrom tihe unigucness part
J.5.4), 1t sufiices here to prove the Former. For that
it is enough to prove

{O.f-).;f} G’(@ “CZ; ] ldFB)(lB> = G(B“)(FOC 'F% )(iBll‘)

|

o iy - e i ey

P ——

o i



since this is the definiang eyuation for T, % * wow since
;9.
4

G is a functor, we have

(0.6.3)  G(f ik, 18 ) -(G(f,, iy, D@l , iy ) .

Similarly, since G(B") 4is a fuactor, we have

(C.6.4)  G(8")(F, -AF) = (G-(B")(Fp(_))-(G(B")(F{.:;,)) .

Applying (046.5) and (0.6.4) to (0.6.2), we sée trat it

will suffice to prove

\ (6( B, 144 )) (G(eX, id; ))(13) =

(6.6.5)

(8¢5, 0+ ((3") (T Dlig)

dccordingly, we make the coanvention that a point

s of & set S 1s to oe identified with (i.e., thoug:t of)

as) a function (also written s) from a sinzle point =

to S (sending * %o s ). With this convexztioxn,

- : 3 P - =
consider the diagran

a(B)(F,) |
/ wd@.)
iy (3')(Fy) |
/ W \-ﬁ—{!&), idl;u;)
% -—3-:-———‘)- G(B')(Fa) ;'3(5“7':5'3)
K- 87 : ) T @TLL o)
3 G(x )(*-“‘)
N '-:_}u G(-B")(-bBI)

\1 = - G(B") (7,
G(B")(Fgu) "”’%Ll”;?



et i b o TE s i Bt e e i

ot Py bt Torei bscehisicn

in which G(d)(idF_) , €5C., 18 the same as G(«, id, ),
5

etc. Since G is a functor, G(B8) so delfined is-'a
natural transformation (from G(B') to G(8")); hence

the rizht hand square coumuutes. Thé left hand sguares

gach comaute by defznltlon of %i. and ?6 ’ Iand SO Ve
nave established (0.6.5) and proved F is a functor.

Proof that F is a funcvorial represeatation for G .

It is convenient to designate the natural eguivalence froa
G(B) to hFB corresponding to the universal element

iy € G(B)(F.) oy the same sy.bol i, 8O that for

o

B
¥
-

(=

To see that the family iB(A) of equivalences sets up
a natural equivalence of functors from BXa , it is Then
0 see it sets up a natural vrunsforration, for which
7e must check that, when fB 6: b(b B'), the diasran
By (A) é———f—j—- G(B)(4)
Be6) ! hi*‘ (4)

v

e, () b

Ggﬂ)(A) '

e

G(B'I(a)

iB(A) ie an equivalence G{58)(4&) =>-@F}AJ = :(FB,A).
. Pu]



(’/.'a

Lo

wiere hyn (i) sends £ - iﬁp(A) 2(F, , A) to
3 B =

(4) 4 conmutes. So let

Th € &g, A) = np

» €& G(Bj(&) . Following p c;ockwise around (0.6.8)
gives an element f' = (iﬁ,(x‘;D-(G(‘G)(A))(p) - hFB'(:"L) =
y 4) which is uaniquely determined (using (0.5.4))
by the requirement
(0.8.7)  @(B')(£'DEG) = G(ﬁ)(xi)(;;) .
Let £" denote th; element obtained by chasing p
around (0.6.6) counterclockwise, i.e.,
£ - 011?5 (A0 EaN(p) = (15N 5

Now (0.5.6) commutes iff f£' = f" | i.e., using (0.8.7), iff
(0:6.8) (32" (550) = EM)(a) -

In order to prove (0.6.8), consider £ = iB(A)(p),
vaich is the first stop when chasing Pp around counter-

ockwise to get f" , so that

i\.';Q6,9). £% = f.F
This f is uniguely determined oy the azu2tion

(0.6.10) p = (6(B)(£)(ip) .

>



Next, we remark that thne dizpram below com:iutes.

. - G(B)(A)
~ P 5
l
iz G(B)(z 1 aE) (&)
(0.6.11) \!/ , , AV
G(J’)(FB,) G(B){Fj) Q(_ﬁ,')(_&_)
ENCR
G‘(i )(r% e

G(2')(Fy)
o

Indeed, the upper trianzle ccomiutes by (0:6.10), thc left
square commutes by definition of Fp , and the right square
!
commutes sinda G?G) is still a naﬁural transformation fronm
G(B) . to G(B') . Pinally, application of tae fuactor G(B'j
to eguation (0.5.9) gives the relation
(@(31)(£)-(e(3")(Tg0) = G(B")(E")
i
wnich, together with the commutativity of (0.6.11), yields
the desired relation (0.6.8). This finishcs tie proof
Proposition (0.6.1).
Application of (0.6.1) to some of the examples
(0.5.5)=(0.5.1%) yields the following examples of

functorial representations.

»

2 e . g e s — g

o Sm i o e S A 43 e
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(0.6.12) Let A, Dt an object of i aund led

GA‘*E:.iL*xé —> 35 Dbe t e fuactor waich assigns to the

pair A_.l, B ‘bhg set é(i;l‘ B) K.L‘;(Js.e, 8) . If each

direct sum 4,@4, exists as an object of 4, (0.6.1)

assurcs that any choice of direct sum ‘.*1@‘."2' is part-

of a fuactor @.‘-"&2: 4 —> i, gdamning with 4, .
(0.6.13) Any choice of dirsctiproduct &, X4, , Ior
each 4, and fixed 4, , 1s likewlse part of a functor

: & —>» A , pultiplyinzg with an

(0.6.14) Any choice of ker £, for each A-morphisn
a functor Xker: 4 —> 4. Siwilarly
for coker .

(0.6.15) If in =« concrete catezgory A & fres object
s for cach set S, any choice of frec Jdbjects is

part of a fuuctor a:

{{[&3}

—> 4, which oy definitivn (0.5.1)

is a left adjoint to the imzmersion \\: R

L9

(0.6.16) There is, if teusor products exist in an

r

autonomous category 4 , a fuuctor & Ayt i —>

=
-



&

‘ﬁgnzqring with AZ y Which assigns to each object Al
a tensor product Al®.»12 of 4, with 4,.

Just as represenv..tions are unique to witlhiin unique
cozmpatible ejuivalence, as follows from (0.5.2) and (0.5.4),
30 can this fact be used, in an argzumeat lilke that proviag
(0.6.1), to-snow that functorial reprecsentations likewise
are unique to within unique compatible'na;ural egquivalence.
This comment is intended, in particular, for use with tae
functors obtained in the exanples 2bove.

One last commenﬁ: left functorial representations
preserve :left representations (the same is true replacing
"left" by "right"), when they exist. This is an immediate
consequence of the definivion (0.5.1l). 7Thus, for example;

unctor which has a right adjoint preserves dirct suas,
t zero objects, cokernels, and & functor which is a
rizat adjoint preserves direct products, right zero objects,

2na kernels, among other things.

T ——
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Let 4 be a set, of an ordinal, and A  the set of

; ~
all sequences <a§)0‘f~§<’°¢ of elements of 4. A function

ol :
£: A —> A 1is cdlled @n operation of length «« on A,

and A 1is czlled the xealm of the ojeration ¥. If F

and ‘G are two operatiuns of length ¢ on realms A and

b, respectively, a function f: a —> B 1is callcd a

nozomorpnism from © to G if

Let A = (d)t)'oﬁ)((.’: be a sequence of ordinals, and

o

1?‘}‘ (6L A< B) an operation of lenzth Kl o 4. The
)

collection (4; (F}\)O()\A%) is called ar zl-gbra of tyne
= |

/\, ora /-alzeora. A A\ -porpnisn from & A-algebra
(A (FR)) to another (3; (G}\)) is & funetion frox 4
0 B which is, for each available A sy & hoaomorphisn
fron FA to G;\ .

The cat‘e;;ory of all A—al;cbras and A—z:orphisxs

is denoted (A) , and is obviously concretc. A riznt

(%]

L4



zaTo object is afforded by the set consisting of a single
element and the obvious (and unique) operations. Two theorens
of Slomifski [24 , Chap. III, (1.1) and (1.3)], when combined
with (0.6.1), indicate that the immersion of (/\) in S

by virtue of which (A) is concrete has a left adjoint,
which, in accord with (0.5.10), is said to assign to the set
S the free /\-algebra on (generated by) S. In particmlar,
we have a free /\-algebma W on & set whose cardinality is
the rank of (/\), namely, whose cardinality is that of the

least limit ordinal greater than or equal to each <y (0<1<2).

A full subcategory 4 of (/\) 1is said to be
aquaXionally defined if there is a free A-algebra We

and a subset E* (C IW*| x |W*| such that a A -algebra A
belongs to 4 if and only if each /\-morphism f£: W* —> A
satisfies f(x) = £(y) whenever (x, y) & B*, and E* is

called a set of equations determining 4. An gquational

[\-category is an equationally defined (full) subcategory

of (/\). Slomifiski has proved (X6, Chap. III] that a

category A 1is an equational /\-category if and only if

A 1is determined by a set of equations in the free algebra
renerated by a set of cardinality rank(/\ ) (or geeater),

iff there is a subset E g IWl x |W] such that

/\-algebra A belongs to 4 if and only if each

/N~morphism £:W —> A satisfies f(x) = £(y) whenever

(xy, ) © E. This is a useful fact, a reinterpretation of

ich is given in §0.10. It is convenient to write A = /\(E)

it ¥ 4is a set of ‘eciuations in W determining the equational

[\ -category 4.



Sloailski [lé] proves the following results

{0:7:1) (ZX) ‘has direct products aad quotients

by relations of equivalence;
is an eguational [chategory,

A

(0.7.2) If &
£:3 =>4 is a /\-monomorphism, and 4 € &,

then B & 4 ;
(0.7.3) If A 1is an eguational Z&—category,

s and f is an equivalence relation on |Al ,

L€ g
A Dy f in QZ&) .

A/{ , the quotient of A
4

the
in fact an object of 4 , and 'is tie quotient of

is an eguational Z&-cutesory and

(1€ I) are in 4 , then ;X( A; , the direct

L, A

3 =
i€z

4 , and is the

in (Z&) y 1s an object of 4

ﬁiracp product in 4 of the Ai's3

T n oy ey
L

(0.7.5) The canonical "underlying set" iunersion
& —m from ain equational [&—category has an adjoint .
'his apdin requires an epplication of (0.6.1) to Slomifcki's

(T

result on the existence of free

i

3 N ik 5
A-obDjects.)



Ve now prove
(0.7.6) BEguational categories have direct sums.
froof: Let A be an equational A—category, and

let @&:

|{¢]

—> 4 Dbe the free ooject functor which is left
adjoint to the canonical imuersion of 4 in S. Given

« (1 € I) objects of 4 , coustruct their direct sum

as follows. PFirst fora E(U\Ai\) -and- "m“(l.é.il) . There

are, on the one hand, a-morphisns E((;“xi\) R
g -
¥i

(corresponding to id];_. ) and, on the other hand,

-.\.i\

4-morpuisms  B(laz)) —>8(Ui4;))  (obtained by
1

applying ¥ to the inclusions \nll C Ui&i\ ) .
By- the last comument of the previous section, it is
clear that (J’i)i €1 is a universal elemeat by virtue
of waich (ef. (0.5.5)) &(Ula;l) = ® u(l4)) .  4lso,
i = :
fe X

p; induces an equivalence relation ﬁ on \ﬂi(l.ﬁil )|
oy ie condition a; fi b, 1ff Pi(_ai) = l3i(bi) . Now

4 be the equivalence relation on |&( Ula )|

senerated by transferring the fi via ,;ji) y, that is %o



S

say, r is tae equivalence relation on \E(L\' lrli\ )l
generated by the relation fo ; defined as follows:
a _fo- b iff JIE€ I and a;, by & aqai[)
i

suach that a. ri bi and a = ji(ai), b = ,ji(‘oi) .

Ve claim: @ Ay = ﬂ(UIAi] )/f . Indeed, for B
i€ I

arbitrary in 4 , we have é(Q(UIAiI )/f, B)

~

{(def)

2fr/1€2@(UIa) ), B), afo =>12a) = 2} ¥ (der §)
2{2/2€4@UI4D, B, o ) b => 1GED = 26D}
= %,(fa'.)ie 1/ 5 € 4@8(]44)),3), 8, ri by =5 £(a) = 2o N}

X a@()ay))/ Fi , 3y 2 X 4a, B) , where
i€ I | i€ I |

the last 2 is due to the fact that (|4, )/ ri s

12

| 5 4
(ef. Slomidski {ZG, Chapter II, (5.8f]).
Remarlk: the same proof works for any concrete catugory
L7 free objects,inwnich ong can divide by relations, and
here, if r- is the relation on lm(lA\)l deternined by

the canonical map B(lA]) —>a , then ﬁ(lél)/f = a.



Let A\' = (“:\)Oé_h<{5' , let gg_(g,' y and put A =
= (dy )05,3.(]'5 . Let W and WI', be the free [\ -algebra
& ?ne free /\'-algebra generated by a set of cardinality
t least rank(/\')« If E is a set of equations in W
‘i.6e, BE W] X|W} ), denote by E also the resulting

arquations’ 1(E) 4ig W', image of E under the obvious

/\-morphism i: W —>W'. Forming both /\ (E) and D\ (E) ,

there is an obvious functor from A\ (E) to A\ (E), which

~imply ignores the operations from the I(})th one oOn.

1

Similarly, if EC E'C W) X|IW|, we get an inclusion

INEY) —> A (E) . An gquational functor is any composition

of these Uwo types of functors. The importance of equational

functors lies in the following proposition.

(0.7.7) Propositior. Each equational functor is

natible with the standard immersions to S and has a
¢"% adjoint. Proof: |
The first part is obvious. Sinée the left adjoint of
L composite is the composite, in the other order, of the
.ndividual left adjoints, when they exist, it suffices to

prove the following lemma.

B

e

B



(0.7.3) Lerie.. Each'of-these fu.ictors
D E) — AE), AED) — AW
has a 1gft adjoint. Yroof:

By (0.6.1) it will suftice to describe the action
of the purported adjoint on each object. In';ne first
instonce, ziven a ZX(E}-algebra A, forn the free
/N (B)-algebra it generates, .E'(A). ﬁéfine an eqguivalence
relation on ¥'(A) as fol;ows: form T(4A), the free
A\ (¥)-algecra generated oy a4, aad let f bg the
equivalence relatioﬁ on ZT(4) determined oy the canonical
projection @(4A) —> A . Transfer f to I'(4), that is
to.say, where J: B(4) ——a»m'(;) is the [&(E}—morphism
induccd oy the imclusion of Tue generators li\ C; (Q'(A)‘,

v t+a a'fo o' (for a', b' in T'(4)) iff a' = j(a)

o' = j(b) with a Vb 5 .Let f' be the ecuivalence

relation in ¥'(4A) generated by fo ; forn ﬁ'(A)/f' .

B is a\_[&(E)—algebra,a Z&—morphism ron 4 to

r_i
H

erxtends to a J\-rorphism from T(A) to B that



. .}/\‘
wf \

identifies ?-related elemenis; nence its exvcension to
a /\'-morphism from ¥'(4) to B identilies f*—related.
elements and is thaus al A‘(E)-—morphism from .8'(4)/ f'
to B. Conversely, each such A'(E)-morpiism restricts
to a A(®)-morphism from ¥(a) to B identifying
f-—related. elements, and so cvies I{rom a ‘A(E)-z:mrphism
from A to B. So the lert udjouint to the first fuactor
is descrived by spehcii'ying that 4 Dbe zat to Ii'(;-’-.)/f' "
In the second instence, givea the A(E)-alg:_;ebra A,
define an eguivalence relation Y directly on & as
follows: for each A-—z‘.orphism f: W—>4, vwrite a ("fb
if a I= £(x) and b= £(y) with (x, y) &€ Z', 1let

?o be the relation zenerated by all the €¢ (Leley

e

0. . | 4
& |, b iff for some f, a i.,‘:))., and let F be the

eguivalence relation generated by fo « Then A/P is
. . '

a /(E')-algebra; morcover, each A(E)—mor‘:-his::.- g <Irom

}-J
[

~ to a. A E')-algebra B8 has tie proserty thit

2 \f b for some f: W —>4, then g(a) = z(b), since if



o i A i i it i T e . At s

B

a = f(x) and b = £(y) wita (x, y) € B, tien

g(a) = gef(x) = g £(y) = g(bj. Hence zlso if a?ib thcn

“ga) = (o). Thus every A(E)-morphisi: from A to 3

identifies F—related elements, hence "is" a A(u')-norshisa
frém the A(E')-algevra A/f to B. Thus tac lefst :
adjoint to the second Ifunctor is describcd by specifyiny
that A is sent to A/T .

Remark: This lefwua will De applied.early in tThe

next chapter in the prelininary discussicii on sigza rings.
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0.8 Iniectives and Frojectives

(0.8.,1) Definition. Let F: 4 —>13 Ve an

immersion (faithtul functor). "An element £ € A4, c)

is called an F-pononorphism if B(B, F(£f): 3(B,FA) —i-g{B-; ¥C)

is 1-1 for all B & B; it is an P-gpimorphism if

—

B(F(f), B): B(FC, B) —> B(PA, B) is 1-1 for all B E€ B+

An id,-monomorphism (resp. id,-epimorphism) is called

=

simply a monomorphism (resp. epimorphism); if B3 = S an
’ = =

F-monomorphism (resp. I-epimorphism) is describved by the
adjective 1-1 (resp. onto).

(0.8.2) Lemma. An PF-monomorphisum {resp. F-epimorpiaisn)

£'€ 4(a, C) is also a monomorphism (resp. an epimorphism).
Proof: Let g, hIE A(C, B) , and. suppose ti}.-t £ is
an F-epimorphism (the proof for an F-monoumorpiism is dual)
and that gef = hef & A(A, B). Then TF(g) F(f) = B(n) -F(£)
in B(FA, PB) , whence F(h) = F(g). in B(¥C, FB), so that,
since F is faithful, h = g and A(f, B) is 1-1, or

f is an epimorphism.

»



(0.8.3) Definition. an abject 4 1is calléd a retract
of C (by a pair of maps £, g) if £ & a(a, C),
g & 4(C, &), and gf = id; . Under tihe same circum-
st&nceé, C is called an extensién of 4, and each of

the maps £, g 1is said to be gplit by the other.

(0.8.4) ZLemma. If A is a retract of C by a

pair of mzps f, g, then £ is an TF-zonomorphism (resp.

g is an F-epimorphism) for each iumersion TF: & —>= 3.
Proof: Since g-f = id, , F(g)+F(£) = idpy - EHence if

h, k € B(B, FA) satisfy F(f)+h = FG£)+k , then

h = id

pah = F(g)*F(f)-n - P(g)F(L)k = idg,k =k

so that B(8, F(£)) is 1-1 and f is an F-monomorphism.
Likewise g 1is an F-epinorphism.
Remark: Such f (resp. g) is called a split

monomorphisn (resp. split epimorvhnisam).

(0.8.5) Definition. An object P in 4 1is said

to be PF-projective ( F an iicmersion from & ) if

{}(Ps f)’: é(Pq A) _"7‘3-(?1 C)



is onto for each F-epimoréhiém; £ & a(a, ©) and eacﬁ
pair of objects 4, C. Aﬁ object J in é is said to
by PF-injective if, for each F-monomorphi;sm e ala,0)
and-each pair of objects A, C, the function .

A(£, 3): A(C, T) —> 44, ) )
is onto. ?inally, an object A ip 4 1is 0511ed an *

L}

absolute F-retract (resp. absolute F-coretract) if

every TF-monomorphism f: A —> B (resp. every
F-epimorphism g: B —> 4 ) splits, thus wmaking 4 a
‘retract of B. Ve adbreviate id.-projective,

id,~injective, absolute id,-retract, absolute id,-coretract

'simply to pmojective, injective, absolute retract, absolute
coretract; if B = S, we say S-projective, etc.

As an immediate conseguence of (0.8.2) and (0.8.5),
we have the following proposition.

(0.8.6) Proposition. The following iwplications

nold, for each iumersion F from 4 to B

projective ==» F-projective injective —=p» I-injective
\ \ W v
avsolute _.  absolute absolute absolute
t F-coretract retract > F-retract .

coretrac



The problem of describing the F-projectives (and the
dual problem of the F-injectives) is éolved, in a special
case, as follows.

.(0.8.7) Theorem. Suppose the iimersion IF: é e—5>§
has a left (resp. rightj adjoint Q:’g ——>4i, and that
every object of B admits an epimorphism from a projec;ive
(resp. a moﬁdmorphism to an injective). Then an object A
of 4 'having one of the three properties

i) A 1is F-projective

ii) A 4is a retract of g(Q) with Q. projeﬁtivelin

iiid) 4 is an-;bsolute F-coretract
ep. i') A is F—injecti%e

ii') A is a retract of -3(J) with J‘ injective in

iii') A is an absolute F-retract)

nhas all three. Yroof:

It is enough to prove the projective case, since the

r

llat]
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replacement of A4 and by 4* and 32* converts the

1]

injective case to the projective one. To tuis end, it
clearly suffices to know these four facts:
.l. B(Q) 4is PF-projective if Q is projactive;
«2. A retract of an F-projective is F-projective;*
«3>« Every PF-projective is an.abso}ute F-coretract;
f#' Every absolute F-coretract is a retract of some
@(Q) with Q projective in' B.
«l. Let £ & a(4, B) DbDe an F-epimorphism, and let
k: 8(Q) —> B. By adjointness (4(T(Q), 8) = 3(Q,F(3B)),
X corresponds to a B-morphism k*: Q —= F(8). Since
Q is projective and F(f) is an epimorphism,.there is a

B-morphism g* such that the diagram

F(a) EE) 5(a)

comuutes; by adjointness g* corresponds to an A-morphism

g: 2(Q) —> A which, by the coumutativity of the above




diagram, makes the diagram below conaute.

A —f a3

e ’

A

a(Q)
.2, Let A De a retract 3 B S
AR
of the F-projective P Dby a | e
: of = n 1
pair of maps £, g ; let L k~_ k 4A .
) ' //
h: B —> C be an F-epimorphism = & g
A —>P
£

and let k: A —>C . Find k'
such that h+k' = k- , and put X" = k'.f. Then
hek" = hek'f = kegef = keid, = k .
.5, follows from CO.5.6).
A4, Let P Dbe an avsolute F-coretract. Let
f: @ —> F(P) Dbe an epimorphism in 3 wigh Q projective.
; a&go;ntness, f corresponds to an A-morphism
z: ¥8(Q) —>» P. P, being an absolute F-coretract, will
be a retract of ¥(Q), as dssired, if g is an

Pecpimorphism, i.e., if F(zg): F(E(R) —> F(P) is an



epimorphism in B. But if u ¢ —> F((R)  is the
universal element, then by (0.5.4) F(g)eu = £; since
£ is an epimorphism, F(g) is an epiworphisn, %oo.
This completes the proof.

Recall that an object G in 4 has beesn called

=

& gemerator if 4,: &4 —> S5 1is an.imwersion. Duzlly,

- . i

a generator K of A4* 1is called a cogenerator of 4

. . X — o a
so K is a copenerator of A iff A™: 4 —» S is a
= = = =

contravariant immersion.

(0.8.8) Lemma. If 4 has a generator G and

—» S, ‘tnen the monomorphisms and the

=4

Nhe»

b= g
ggnmonomor;hisms coincide, whence the injectives and
the A,~injectives are the scme. If éG has a left

o

vint @ (read "free", as usual), then the following

nnditions are equivalent:
i) G is projective

ii) the projectives coincide with tne éG-projectives

iii) every epimorphism is onto. Proof:
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To verify fci:e first ass'eition, let £ € a4, ©)
be a monomorpaism, ancl let g, h & $(s, 4) = s(8, a(6, 4).
Assuning that |f|.g = \f|-h in §(S, 4(6, CD, we havel,
for each point s € .8 ,
£+(g(s) = |£l (a(s) = (£ (a(s) = £-(n(s)
in A(G, C), vwhence, since f is o monomorphisa,
i )
.5(5) = h(s) for all s; this shows g.= h and £ is
an 4,-monomorphism. (0.8.2) coupletes the proof.
For the second astertion, G = Eipoint)', hence by
(0.8.7) G is Ag-projective, and so ii) =» i). That
1ii) => ii) is immediate. Finally i) ==»iii) since if
G .is projective and f is an epimorphism, then 4i(G, f)
is onto; but 4(G, £) = 4-(f) = [f| - This completes thae proof.
We shall deal, in the next chapter, with a situation in
which the existence of one noﬁtriviél injective implies i),
(0.8.9) Rewark: It folows from (0.8.7),(0.7.5), and the
fact that everyobject of ,§ is projective , that the §-pro;jcctives,
the absolute §—corgtracts ,and the retracts of free objects in an

eguational category allcoincide.



0.9 Associated pointed categories

In this section, we discuss a phenomenon which can
most easily by describad? somewhat inaccurately, by the
illegitimate statement that the inclusion functor from
the category of categories with zero to the category of
categories with left zero has a left adjoint. More
accurately, to each.category with a sufficiently good
left zero is associated a pointed category satisfying
certaig universal conditions. These conditions will
allow a tidy description of the transference to the
associated pointed category of a costructure on the

original. Such a description is needed in §l.7.

(0.9.1) Definition. Let A, B, C be three

objects of a category B, and let f: A—C, g: B—>C
be B-morphisms. The diagram A4 Lo gel s is a

pitllback diagram; a pullback of this pullback diagram

is a right representation of the contravariant functor

Py & B —> S defined (on objects) by
k)
P, o(X) = f(n,k)/ b & B(X,4), k € B(X, B), £+b = gekj .

~ous 1f P dis a pullback of the pullback diagram

Afsc<L B , ‘the universal element in Pf g(.'E') is a
. 9 '

pair of maps from P, ome to A, one to B, making

a commutative diagran



, such that whenever any diagram

X i &

\ v

B et

commutes, there is a unique map from X to P making
the diagram

X

P — A
¢ L -

B =—_C

commute. A4 pushout diagram is a pair of maps, which,

when transported to the dual category, becomes a pullback
diagram there; & pushout of a pushout diagram is an object
which, when everything is transported to the dﬁal category,
is a pullback of the pullback diagram there. In the
original category, the situation, schqms.tically depicted, is
C—> A
v Y

T~— T .

An equaliser of two maps £, g & B(A,C) is just a
"u.lback of the pullback diagram A4 --f—? -2 A; coequalisers

ave defined dually. A4 difference kernel of two maps
£, g € §(A, C) 4is a right representation of the contra-

variant functor DKf g B —> % defined (on objects) by

]

DKy o(X) = in/h € B(X,4), f-b =g},

i.6., is an object equipped with a map -- the universal
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element == to A through which every map h to A
satisfying f+h = geh factors uniquely. Difference

cokernels are defined dually. It is not misleading
to use the suggestive notation ker(f-g) for the

difference kernel of £ and g.

-

(0.9.2) Lemma. Consider the following assertions
about a catehory 3B ¢

1) every pair of objects has a direct product

2) all equalisers exist '

3) all pullbacks exist

4) all difference kernels exist

5) there is a rigat zero

6) B is pointed

7) all kernels exist ;

then the following implications are valid:

3) ==z 2) D e (2) = 0]
D=4 = 3] 5 =2 = 1]
6) == [4) == 7] 6) = {2) = 1)].

Proof: The first implication is obvious. To
construct ker(f-g), use the equaliser of the two
A —=> AXB, corresponding to tﬁe_ pairs of maps
(id,, £:4—>B) and (id,, g:A—=B) . To construct
the pullback of A -f—ﬁv C 4&-5- B, use the difference

kernel of the pair of maps

AXB pmm.;k f;c

AxB -EZ0d: 5 &,

g e ——

i p————-



2

Lo construct the product of A ‘with B, use the pullback
of the diagran A —> % B in case thers is a right
Z8T0  Zp g and of the diagram A —> C <— B with any
cbject €, but using the zero maps, in case the category
is pointed. Finally, if the cétegory is pointed,

ker(f) = ker(f-0), where O is the zero map from

the domain of f to the range of f.

Remarks: The constructions in'the proof indicate
that a functor preserving certain of these notions preserves
all other ndtions implied by them. DNotice that a functor
having a left adjoint preserves all the notions in the
theorem, whenever they exist, since they are right repre-
sentations. A dual theorem is of courde available for
direct sums, coequalisers, pushouts, difference cokernels,
left zeros, and cokernels; and a functor having a right

adjoint preserves all these dual notions.

If B 1is any category, define QI to be the full

v

B-morphisms to a left zero of B. If B has no left

subcategory of B' = Mor(B) whose objecté are all
erv, of course, Ql is void, but if B has a left zero,
;. z;  then idzL is a (two-sided) zero object in
=5 The category of sets, whose left zero is the empty
cat, 1s an example of a category for which :i.dZL is the
only object of g} s but such pathological cases need
¢ be distinguished and cést out'of the theory. The

sovres functor T s Moxr(B) —> B of (0.3.9) restricts to




%o a functor from '.§1 to B , which we still denote as

?_; sinilarly, the restriction to B' of the target

functor Tl:_ Jé\t’——ﬁ-@ will still be called Tl « Thus,

an object m€ §! is a B-morphism m: T (m) -—B'Tl(m) = 2y,
and a Tgl-morphism f: m —>n "is" a B-morphism

| %(f): ‘Jg(m) —-9%(:1) satisfying m'= n-%(f) .

(0.9.3) Lemma. Assume that B has a left zero

Z’LI and that each object of B has a direct product
with 2y, Then the functor p: B —> 31 which assigns
%o each object B +the canonical projection from 3BKX z7

to has TO as its left adjoint. Lloreover, if

z
L
n & B(B, Z’L) , then p(m): p(3) —-:N-p(z.L) has a kernel
in the category gl -- namely, the Q!-ob;jec‘c b1 g

Proof: That p is a functor to begin with is due

to (0.6.13) and (0.6.1) . To produce an equivalence
3(7(m), B) & B'(m, p(8)),

assign to the gl-morphism f: m —> p(B) the composite

of the B-morphism To(f)= ‘l‘o(m) -—-“r'To(p(B)) = BX z
.th the projection of BXzy %o B, and to the
Lopphism g To(m) —=>B the gl—morphism from m %o
") which sends ‘%(m) to %(p(B}) = BX zr by the

A-morphism corresponding to the pair (g, m). The

universal element making wm: B —> zg, the kernel of
] BX 27, zLx 2
the E"’-morphism p(m): p(B)\L' —-—?—p(zL) \L is the
) 27, zg,



e
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B BXzL
==IB_l-»111(.:::';;:1:;:1.:3m from me to p(B)\L which sends B to
2y, ' zg,

B to B’sz by the B-morphism corresponding to the
pair of maps (idg, m .

It will be convenient to speak of a category satisfying
the hypothesis of Lemma (0.9.3) as having a producfive left
zero. The coming lemma on categories with productive left
zeros is crucial. |

(0.9.4) Lemma. Let 4 De a pointed category, let
B Dbe a category with a productive left zero, and let
£ be a functor from B to A . Assume that whenever
n & B(B, z;) the A-morphism F(m): F(B) ——%»F(zL) has
a kernel, and define Pl §! —> 4 by Fl(m) = ker(F(n) .
.l. If F preserves products with zi', i.e., if

F(BX z;) & F(B)XF(z), then Flop Z F.

2+ If, in addition to preserving products with Zg, s
F also preserves the pullbacks, when they exist, of all
pullback diagrams of the form A —> C &— 2, » then
Fi preserves kernels, when they exist, and any kernel=~
preserving functor whose composite with p is F must
be maturally equivalent to Fl.

.5, Parts .l. and .2. above and the conclusions
of Lemma (0.9.%) characterise the category §! to within
unigue equivalence.

Proof: We begin by disposing of the uniqueness of

!

sl If B and §l are two categories (pointed)



equipped with functors p: B —-% gl s pl: B —-—:r_I}l » each

of which has a left adjoint, and for which p(m) has a

e for each

kernel :Lnl gl_ and pl(m) has a kernel in B
B-morphism m with target 21, (these ars the conclusions

of (0.9.3)), then both p and "pl - preserve all products and
pullbacks, being right adjoints, and so, by .l. and .2.,

there are unique kernel-preserving functors u: _BI r— §l ’

v: Bt S B! y satisfying u°p = pl s v-pl = p. But
uev (resp. veu), which is kefnel'presarving since u
and v are, satisfies u-v-pl = uep = pl (resp.

1

VeUsp = vep— & p), whence, by 20y UV = idBl (resp.

Veu = idBl ). This proves .3. .

Part .l. is an immediate consequence of the following
well known characterisation of direct products in pointed
categories.

- (0.9.5) Lemma. In a pointed category 4 1let ro'ur maps

A A

N
C. .

/ZB N

B B

3 given. Then the two sets of conditions
l. a) jy aad Jp make C = AX3B
b) i, (resp. iB) corresponds to the pair
of maps (id.A sy 0) (resp. (O, id.B))
2. 8) Jpedy = idy and Jpeip = idg
eb) i, ‘makes A = ker(.jB) and iy makes B = ke:é(.jA)

are mutually equivalent.



This lemma is too well known to be proved here. It
establishes .l. because Fl(p(B)) = ker( F(B» zL) m F(zL)) -
= ker( F(B) X F(zL).m:—}F(ZL) ) = F(B).

Finally, if m & g‘ s Lemma (0.9.3) guarantees
that m = ker( p(m): p(To(m)) ——}p(zn)) . Hence if
Fl: Ql —> 4 1is a kernel-preserving functor satisfying
Fl-p = F, we have, for each m & §1 .

FH(n) = F(xer(p(m)) = ker(FL(p(n)) = ker(F(m)) = F'(m) .

This proves the uniqueness part of .2.; it remains only
to show that Iii‘i does indeed preserve kernels, when they
exist, provided F preserves pullbacks of the described type. .

Now it is easily checked that the kernel of the }}l-morphism

A C :

f: m\}, — nl is obtained by forming the pullback P of
2 z
L L

; Z
A %(f)yc\ 1O Z7, s

where zp, is the (unique) zero map in B, and taking the

composite of the pullback map P —> A with m: A —> 2y 3

this composite map from P o 2y, is the §l—ob;ject which
is the kernel of £, call it ker(f): P — z; - Then:
! . P F(P)
P'(ker(£: m —>n)) = F'(ker(£)}) = ker( F(ker(z)] )
z F(zL)
- ker(F(To(f)): F(A) —=>F(C)) =
F(4) _ F(C)
= ker( ker(F(n)| —XeEEUD yorrmp] )
R(zL) ‘ F(zL)
- ker(B‘f(i‘): F.l(m) —-&Ff(n)) .




i B L . i

Bkl s A

The elementary diagram-chasing argument, involving
the diagram |
P — F'A — F'C

I l I

Ker FA FC

l I |

— R ]
0 FzL FzL

which is needed to astablish the identifications indicated
in the second line of this string of identifications

will not be reproduced here.

(0.9.6) Addendum. Under the working hypotheses of
Lemma (0.9.4), F'owill preserve finite direct products
if ¥ opreserves all pullbacks of pullback diagrams of .
the form A e By, S B. For since the direct product

of m: A —> 2 with n: B ﬂ/zL is the pullback of

A —> 2. &— B equipped with the evident map to 2r
(compare (0.9.2)), we see F!(mﬂxn) =

!, pullback of -
FliS e B 7%)

pullback of

ker( F( §
A ,2ZL<E*B

) _*'F(ZL) )

pullback of

ker( FA —> F2p )x kexr( FB -%FzL)

F'@a) xF'(a) .

Implications of this sort abound; we shall point no

moré of them out.

¥
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Remarks. There are two ways to dualise Lemma
(0.9.4) -- one is to take all the functors as
contravariant and use cokernels in place of kernels,
the other is to assume that B has a right zero
all direcf sums with which exist, and to associate
to B the category dual to (§‘){ y i.e., the category
of maps from the right zero. If we apply this procedure

b s trivial), we obtain

to the category S (recall S
exactly the category S, of sets with base point. (0.9.4)
indicates that there is, to within equi;alence, but one
pointed category associated_to a given category with
productive left zero, and that there is often but omne
extension Fl for a functor F. The next lemma indicates
the naturality of the passage from F <o Fl; modulo

set theoretic difficulties, it asserts that this passage

is a functor from the category (B, &) of functors from

B .to A (the morphisms being natura;-transfprmations)

to the category (éi,‘éD » provided 4 has all kernels,

and presents a criterion characterising this functor.

(0.9.7) Lemma. Let 4 Dbe a category with kernels
(prerequisite: A is pointed), and let B be a category
with a productive left zero Zg, ¢ If F is a functor from

B to A, notice that Fl: gi

—> A 1is always defined;
let KI.-danote the natural transformation from F! to F-T,

determinad by the canonical injections

kex(F(m) = F!(m) —> F(2(n) ,
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and let :§F be the natural transformation frqm FT,
to F+L determined by the maps

- F(m): F(T,(m) —= F(zy) = F(T(m) -

ode &L 'lqz F =—— G 1is a natural transformation

between two functors from B to 4, therse is a natural

|

tra.nsformatioﬁ 'rll: F_I — G° , which is uniquely determined

by the requirement that for each m € 1_31 the' diagram

g (m) L lk’G(m)
P(z (m)) LD g (a))

should commute. Moreover, if )\: G —> H is another,
then (A-’nt)l = /\i- rll . Thus, the passage from F to

! behaves like a functor from the (perhaps illegitimate)

F
category (B, 4) to ((i;lil » £4) « Interpreting composition
with T, and composition with 2, similarly, E behaves
like a natural transformation from the first to the second,
and X 1like its kernel.

.2, Any "functor" in the above sense from (B, 4)
to ((B! s A) for which .l. holds is naturally equivalent
to the passage from F to F! .

Proof: Since F'(n) = ker(F(m) , the existence and
uniqueness of each ’”ll (n) are a consequence of the fact

that ker: 43_..‘]’ —>4 is a functor (cf. (0.6.14)); that
'J"l
(

of each map Tl!(m) . The interpretations are obvious, and

is a natural transformation follows from the uniquensess

«2s is in effect a restatement of the definition of F,l_ i



Remark: ILemmas (0.9.4) and (0.9.7) can be used to
indicate the sense in which the adjdintness statement of
the introductory paragraph is to be construed. Rﬁther than
dwell overlong on this matter, however, we prefer to pass
immediately to the promised application to costructures. |
In order that our result should be.of greatest usefulness,
it should incorporate & naturality statement; and to this
end, the following definition, following Eilenberg's
lectures in homological algebra at Columbia University,

1962-63, will be employed.

(0.9.8) Definition. If A 1is a concrete category

and B is an arbitrary category, the category Str(3, 4)

of A-structures over objects of B has for objects all

triples (Q, G, €) with Q& B, G & contravariant
functor from B to A, and & a natural equivalence

between §Q = Q(-, Q) : B —> S and the composite
l6l: 3 45 s s

(so that G is, in the sense of (0.5.12), an A-structure
on Q). A4 map from one A-structure (P, F, S) to
another (Q, G, £) is a pair (f,‘?) with £ & B(®P,Q)

and 7 a natural transformation from F to G such that

17| s ey
N

B ——g—> B*
B

is a commutatitive diagram of natural transformations

between functors to § ,



Sending the object (Q, G, £) of Btr(B, &) to
Q in B and the map (f, ﬁ) "to the 3B-morphism £
defines a functor from Str(B, é) to B which, by the
Yoneda theory of §0.4, is readily seeﬁ to be an immersion.

Notice that, while the composite functor

str(3*, 4) —>B* —> B

. is contravariant, the objects of Str(B*, 4) can be

interpreted as costructures, in the semse of (0.5.12),

over objects of B, and so we are led to define the

category Costr(B, 4) of A-costructures over objects
of B as the dual of Str(B*, &),

Costr(B, 4) = (Str(B*, &4))* ,

50 that the underlying B-object functor Costr(B, &) —> B

is again covariant. The evaluation functor for a category

of g-structures is the functor
ev: B* »Str(B, 4) —r 4

sending the pair of objects (B, (Q, G, £)) to the
A-object G(B); dualising both B and Str(3, 4),

the evaluation functor yields a functor, still denoted

ev: Costr(B, AD)*xB —> A .

*

The.length of this definition is matched by-its
usefulness, which is a consequence of two naturality
proPerti;s. The first of these is that each functor
g: A ——&'él between concrete categories, compatible

with the immersions to S in the sense that the diagram
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commutes (to within natural equivalence), gives rise
to a functor from SPr(B, 4) to Str(B, &l) that sends
(Q, G, £) to (Q, #°G, #(£)) and hence makes both

str(B, 4) X

A Str(B, 4)
o

Str(B, 4,) — 4, : _S‘tr(é, 4D

commutative diagrams; moreover, any functor from
Stx(B, 4) to Str(B, 4,) for which that's the case
must be naturally equivalent to the one Jjust defined,
which we may call Str(B, #g). From this uniqueness,
it follows that if ﬁlzél -—9-%2 is another functor
between concrete categories, compatible with the |

inmersions to S, then
(0.9.9) S‘Gl‘(Ea ‘dl)‘Str(;;aq g) = Stl‘(@a. ¢1‘¢> .

The second naturality property is that each functor
g: B, —> B having aright adjoint ¥: B —> B, gives
rise to a functor Str(&, 4): Str(B, 4) ——9'Str(§l, &)
naking the diagrans
Str(3, 4) —> B

Str(x, g.)l l?ﬂ
Str(:_Bla é-) oy gl\

and



r/f

B* < Str(B, 4)

B, X Stx(3, 4) 4

id X snm A

1_31' x 8t2(B, A)

both commute, and uniquely determined by those requirements.
i Neamely, Str(Z, A) assigns to the A-structure (Q, G, &)
| the A-structure (¥(Q), G+&, ¢'), where ¢' 4is the

composite natural equivalence
B,(3, ¥(Q)) = B(z(B), @) = 16(T(BDI .

From the uniqueness again, it follows that when ﬁlzga-é>§l

is another functor having a right adjoint,

(0.9.10  str(d@;, 4)-stx(¥, 4) & Str(E-4y, 4) -

There are corresponding results, available by duality,

for costructures; notice, however, that it is a functor

i bbb s i

from §1 to B having a left adjoint that will induce
the functor Costr(B, 4) —> Costr(B,, &), counterpart
to that above. In particular, the second naturality

property fails to describe the transference of A-costructures

from B to QI » since according to Lemma (0.9.3) the

only candidate for a functor from EI to B, namely T ,

i has a right adjoint, not a left. It is for this reason

é that we needed Lemmas (0.9.4) and (0.9.7); with their help,
we can prove the main theorem of this section. Incidentally,
the.central result of the next section is also a theorem

whieh validity the second haturality property seems at first

glance to discourage.
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(0.9.11) [Theorem. Let B be a category with a
productive left zero Zp and let A Dbe a pointed
category with kernels, admitting & kernel-preserving
immersion | |4:4 —> S, . If (Q, G, £) & Costr(3, &),
and q, is the base point in [IG(Z'L)I,I = B(Q, 2zy),
then there is a unique compatible natural transformation
51 such that (qo, GI, 5}) = Coétr(gl, 4) . This
defines a functor from Costr(3, 4) to. Costr(gi, 4) ,

the only one, to within equivalence, making the diagrams

L}

Costr(B, 4) —> Costr(B, A)*x B

5
A ev
'l qé and AV E\Hsﬁ &
! x 1
Costr(nBl, 4) —> §1 Costr(B’, L) x B’ /e:r

both commutej moreover, this functor, together with

Costr(p, 4): Costr(?l, A) —> Costr(B, 4), sets up an
equivalence between the categories Costr(B, 4) and
Gqstr(gl, A)e If 4: & ——ﬁ-él. is a kernel-preserving
functor to a pointed categoxry él ,having kernels and
equipped with & kernel-preserving immersion to S, , and

g is compatible with these immersions, then the diagram

Costr(B, 4) Costr(g, £) > Costr(B, A

Y 4

1 :
Costr(gl, 4) Costz(B_, dl—?—Costr(QI, &l)

commutes.
Remark: The formulation of the second naturality

propserty, with respect to good‘functors to §., can safely

-
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be entrusted. to the reader, as can the formulation of the
dual theorem describing the tfansfarence of A-structures
from a category with additive right zero to its associated
pointed category. Observe, as an example, that since the
pointed category §I associated to S ié.tha zero category,
S has no non trivial pointed costructures (i.e.,-
A-costructures with A pointed, having kernels, and
equipped with a kernel-preserving immersion to §.) y Jet
the full subcategory of §$ generated by non empty sets
has many such, and they are not described by our theorem.
Instead, they are essentially taken care of by the
appropriately dualised version of the second naturality
property (in the vicinity of (0.9.10)), which compares
them with the A-costructures on S, (notice that the
functor from S, to S that springslat once to mind has
a left adjoint).

Proof of (0.9.11): The existence and uniqueness of
a compatible ¢! is dus to.(0.9.7); that gl is an
equivalence, so that (qo, Gl, g!) = Gostr(gl, 4A)

follows from the identifications

IIG (@) 1] = txer( 6(m): G(T(m) —>6(z D) M.
= |ker( 16(@)ly ¢ 16(2@D 1 —> 16(2)1, )|
S if/£¢ B, T(w)), mef =g}

B(ggs @ = (B)g (@

n

That the two diagrams commute is evident. Any functor



from Costr(B, 4) to Costr(gl, 4) making the diagrams

commute must send (Q, G, &) to (qo, Gl, ?)

by (0.9.4)and (0.9.7), and then ? must be <,

- which proves the uniqueness. The two composibes with

Costr(p, A) are equivalent to the identity, since

Costr(B, A) —> Costr(B', 4) —20str(ps &) . o o (n 1)

sends (Q, G, £¢) via (qo, Gl, | z'}) to (To(go)’ Gl-p, 27);
but T, () = Q, G'-p =G, and ?? must be £, by

the definition of T, and g, (0.59.4-),_" and the

second naturality property. That the secon& composite

is eéguivalent to the identity is seen in much the same way.
Fiom this equivalence, the last assertion follows, and the

proof if complete.



0.10 Equational Structures

(0.20.2) Tet A = ((%3)g o) bave zazk [
and let Q Dbe an object in a category 4 which contains
all the- t.x-iterated. products Q,}'L of Q (ngﬁg)) - <
G: A —> (A ) 1is a contavariant functor which is a
(/\ )=structure on Q, then for each 4 & A and each
) (0-_(_)(%’») there is an operation FA(A) on .&.Q(A) 5

/ 1 '
7 (@) (%) T — %)

After the identificatioms

{ o«

@Q(AY JO Qf/\ - s, 9 - R W,
the fact that G 1is a functor indicates that, for each
,\ (0L )¢ b) , the operations Jk(1!.) (A& &) are part
of a natural transformation Fj: AQ * : J;:.Q s Wwaich by
the Yoneda correspondence (O.4.4) is determined by a
unique A-morphism £ 3G Qoq —>Q . By an obvious
extension of the terminology of §0.7, we call these
f,\ 's operations of length «y on Q, and we say they
realize the given (/\ )-structure G on Q, and that
Q is a /\-algebra in A. The converse, that every
/\-algebra in 4 has a (A)-—structura, is obvious
-=- the above argument is easily reversible. loreover,
the notions /\-algebra, /\-algebra in S, and set
having a (/\ )-structure, all coincide .



(0.10.2) Suppose that Q is a /\-algebra in 4,
and the category A coantains all iterated products Q}&
(Of_rkf_f) of Q. Define a subcategory Q of A as
follows. For each ordinal J-A of cardinality < f,
pick an iterated product Q' of Q 4in 4 -- these
are the objects of &; the maps of Q are generated
(via composition and product-formation) by the operations
f‘\ of Q, and by the canonical projections Q,H —_ Q
and diagonal maps Q —> Q’“. If we form, in this way,
the subcategory W of S associated to a free /\-algebra
(in 8) W generated by a set X (assumed well-ordered),
then there is a 1-1 coérespondence between the elements
of W and the f‘}-morphisms fron w to W, obtained by

assigning to the ﬁ—morphism w: w¥

—> W the element

w(u) €& ¥, where ug WX is the inclusion of the generators
X -—>W, and assigning to w € W 1its expression as a
polynomial in the elements of X. In other words, Wx

is a free {'}—ob;ject, with respect to the inclusion w — S,
generated by a singletion =-- the inclusion of the generator
is the inclusion of u in Wx « 4ll this only makes sense,

of course, if card(X)< f .

(0.10.3) Slominski's results in [4,, Chap. II, §37]
may be iﬁterpreted as stating that whenever card(X) = f,
there is, for each /\-algebra (in S) 4, a functor
-C)-A.‘ iy => & having the following properties. To the
object wh is assigned the object s ; to projections and

»



diagonal maps in ‘.ﬁj are'assigxied the corresponding
projections or diageral maps in A ; to the A-th
operation on W is as‘signed. the A=th operation on
A (0L l((}) ; and if f &€ AX corresponds to

£ € (/\)(W, &) under the correspondence

A%z osx, &) = (A)Xw, &),

then (), (W)(£) = F(H(u) fop all W € WX, w),
or in other words, ﬂA(ﬁ)(E-u) = f(W(u)) for all
TE (AYW, &) . It is clear there is only one such

functor QA .

(0.10.4) Suppose now that Q is a /\-algebra
in A, that 4 contains all iterated products Q,f‘t of
Q (0LuUL f) , and that W is a free /\-algebra (in §)
generated by a set X of cardinality f . For each
o‘?a‘ect AC 4, we write simply (), for Q-_E;(A. Q)
W — (44, Q))7 . TFor each A 4, the covariant

hom functor 4,: 4 —> § induces (by restriction) a
functor ()%: § —> (4(4, Q)" . We claim there is

a functor QQ: W —>Q such that _()_%_;QQ = (0, o
Indeed, if W € W(WM, w), wé nave, for each A €4,

an element (1) ,(#) € (a4, Q)" (44, M, &4, o) ;
after mgking the identififations

A(A, Q) = aﬁ(A). GCa, ol - gq}&(a). aca, " C s,

L4



M
and thinking of () ,(W) as being in 5% (1), £%4)) ,
it is clear that the collection () ,(W) (A€ 4)

defines a natural transformation

: é i

QL@+ 4% — a8

which, by Yoneda (O.4.4), comes from a unique A-morphism

Q" —> @ which we shall call _C)_Q(\'i') . The verifications
that zq(iﬁ) is in fact a Q-morphism and that in this
way a functor from 7 to Q is obtained are simple
applications of the Yoneda naturality theory of §0.4

which we leave to the reader. That [)_QA- %= 3 i

Is clear from the definition.

(0.10.5) The purpose of the above discussion is to
facilitate the description of /\(E)-structures in terms
of properties of (/\ )-structures. Under the 1l-1
correspondence of (0.10.2) betwsen the elements of the

free /\-algebra W and the VW-morphisus from wX

to W,
each set of equations E C-WX W corresponds uniquely to

a set of pairs of i‘}—morphisms, say EC i'i‘(l‘!x, W) x‘}:’(wx, W) .

(0.10.6) The condition that a /\-algebra (in S) A
be a /\ (E)-algebra is equivalent to the requirement that
each /\ -morphism from W to A identify both members of
each pair in E; this is clearly equivalent to the
requirement that QA‘ W—> X (of (0.10.3)) identify
both members of each pair of {i‘—morphisms in E. From

-this, we shall now show that if Q is a /f\-algebra in 4

¥



and if A4 contains all products of Q mnecessary for the
construction of Q, then the /\-structure realised by
the operations on Q is in fact a /\ (E)-structure (and
we say Q is a /\ (E)-algebra in 4) if and only if the
functor ()%: ¥ —> § identifies both members of each
pair in E. Indeed, the A-structure realised bj the:
operations on Q is in fact a /\ (E)=-structure if and
only if QA(SE) - QA(S?') for eac‘h pair (%X, ¥) € E
and all A € A (this is the () , o£ (9:10.4)), which
is equivalent to () (k) = () (M: .g.Q' —_— {EQ , which is
in turn equivalent to QQ(EE) = _(_)_Q'(:};) € o&(Qx, Q)

for each pair (%X, ¥) € E .

(0.10.7) Let /W, &_7 bve the category of product-
preéserving functors fo 4 from ths category W associated
in (0.10.2) to the free /\-algebra W generated by a set
X of cardinality renk(/\), and let / W, &_7, be the
fuli subcategory consisting of those functors () in
LW, 47 for which ()(X) = ()(§) whenever (%, ¥) € E,
where E is the set of pairs of i-morphisms associated
in (0.10.5) to the set of equations E g WXW. There is
a functor éﬁ: /- i’;’, é-'JE —> str(4, A (E)) sending the
functor () to the A\ (E)-structure (Q, G, &), where
Q= ()W, ¢=4i1id, and G is the A-structure on Q
defined in (0.10.1) by the operations -(_)-(G).) , Where G,\
are the operations of W -- this is a /\ (E)-structure by

the previous paragraph (0.10.6) .
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(0.10.8) Lemma. The functor EE‘ sets up an

equivalence between / ﬁ., .&JE' and the full gubcategory
of Str(A, A(E) ) oonsisting of- those /\(E)~-structures
(Qy G, £) for which all iterated prodﬁcts QP\ (Oiﬁif)
exist in A . Proof:

"~ An object Q in A is equivalent to @E(_(-)_) = () (W)
for some product-preserving functor () & [ W, &_%
if and only if all p-iterated products of Q exist (0<_(uif)
and Q is a A(E)-algebra in A, by the preceding.

(0.10.9) Corollary. If A contains all the iterated
products Q,pL CEN'ES f') of all its objects Q, then ‘EEE
is an equivalence between / W, A_/fp and str(d, A(®)) .

Proof: immediate.

(0.10.10) Theorem. Let A De a category containing
all p~-iterated products (Oib,\i f- rank( /\ )), and let
F: A —> &' be a functor which preserves all the relevant
M-iterated products, i.e., 'F(QM) Z (F(Q))H . Then F
induces a unique functor Str(F, A(E)) from Str(4, A(E))
to Str(4', A(E)) naking the diagranm g

Str(h, ACE)) —>4
str(F, A(E))L LF

Str(d'y A(E) ) —> &'

commute. If g: A(E) — AY(E) is any product-preserving

functor compatible with the underlying sets, then the diagram

td




str(a, A®) SEGD ssera, NED)
151;:@, AE) Lstr@. A (E'D)
Str(4', A (E)) > Str(4'y, AN (E'))

Str(a', 8)

commutes. Proof:
By (0.10.9), Str(a, A(E)) = [ W, 4 _7, . Define
Str(F, A(E)) to be the composite

Str(4, AE) — [V, AL L o, A T —>str(s, AE) . |
IEhia obviously makes the first diagfam-commute, and is,
to within natural equivalence, the only sucan functor
since the lower horizontal dunctor is an imﬁersion.
The uniqueness has as consequence the commutativity of
the second diagram. |

Remarkss i) A functor g such as that occurring

in (0.10.10) also gives rise to a functor 3‘:'&- e ﬁ,
where W' is the category associated to thelfree /\'-algebra

W' generated by a set of cardinality rank( /\' ) , and

the diagram

str(s, AE) 22 B) s sena, N (E'))

i T

LW, éJE .9!. > /7, éJE'

commutes .

ii) Of the three variations of (0.10.10)
available py duality, we point out the one which will be
used crucially in §1.7, and is obtained from (0.10.10) Dby

replacing A' with its dual. It states that each contra-




variant functor, converting F—itaratgd products to
fx-iterated sums, from a category 4 having all A-iterated
products to a category 4' (O _f_f,«f_ranlc( /A )) induces
© & unique comﬁatible functor from St'r(.g.a [&(E)) to
Costré&', A\ (E)) . |

iii) The functors on structures of
(0.10.10) and those of §0.9 are compatible with each

other -- the uniqueness guarantees this in each case.
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Chapter One

‘Boolean Rings and Vector Iattices



~Cy
™

l.l Definitions -

Let A = (2,2). A A—algébra wita operations
V, /A , satisfying the equations
xVx = x = x\x
xVy = yVx

xAy = yAx

xV(yVz) = (xNy)Vz

xN(gAz) = (xAy)Az

n

is called a lattice; & lattice satisfying in addaition

1

(xVy)Nz = (xAz)V(yAz)

(XAY)V %

(xVz)AN(yVz)

is called distributive. An element O 4in =z lattice

satisfying OAx = 0 is called a minimal ¢lement, or

a zero; there is at most one such, and it satisfjeas
in addition OVx = x.

when x, y,’and 2 are eleuments of a lattice with



Ty
S

zero, 2z 1is a relative complemznt of y in x if

zA(yAX) = 0, 2N(yAX) = x ;
in a distributive lattice with zero, relative complemeats

are unique and are denoted (when they exist) as z = X = y.

A complementation on a lattice is an additional operation
' of length one satisfying

xA(yAay') =zAhz' , (X'VY')' = xAy ;
then =xAx' . is a zero, call it O, and x' is a relative
couwplement of x in 0'. 4 dEstrioutive lattice can have
at most one comnlementation.

Lattices, distributive  lattices, (distridbutive)
lattices with zero; (distributive) lattices with
conplementation, (distribﬁtive) lattices with zero
and a fixed (unique, in the @istibutive case) caocice

of relative complenents -- with relative comclenentation —=-

all form equﬁtioaal categories.
Let A' =(d,®), where W is the first

infinite ordinal. A A'-algevbra with ouerations




(o] @O .
V. .. A |, ubich is a (distributive) laitice vhen
i=0  ix=0
\/ and /\ are defined by
(e0]

xVy =V (%, 7, 5, «..)
i=0Q
P ;
x/\y=-/\_ (xa Ty Ty “')1
1=0

and which satisfies, in «diltion, the equations

. (o9 ao :
x A (i\:@ (x;Ax)) = o (x;Ax)
(o]
xl/\£!B (%) = =,
o (o8]
x VAN (%, Vx)) = _/\O (x; Vx)
1= 1=
2 ’
:ci\/i=O (xy) = x4

is a (distributive) S -lattice; (distributive) §-lattices
with zero, relative co;;lementation, comflemeutation, are

defined as vefore, and alszo fornm ecuational categories.

The partial order associated to a luattice O~-lattice
4zd —

is derined by x<y iff Ay = x (iff *Vy =y3).
fach partial ordar on a set is associated to at most one
lattice structure on that set; each luttice Structure, in

turn, comes from at 105t one § -lattice structure. If

’




a partial order is tiae partial. ordexr associutid to a
lattice (which comes from a §-lattice), we say the
partial order coaverts the set on which it is defined
to a lattice (resp. &-lattice).

A ring, every element of wiich is idewpotent (i.é.,
is equal to its square), is called boolesn. I1If a and
b are any two elements of such a riang, there follow

successively from tae ifeatity

-
_—

"} ‘-
a+b = (a+b)2 = a+ab+ba+d" =a+ab+ba+bd
the relations
Q0 = ab + ba and . O = a+a

(the second: of which follows Irom Gre first oy idempotence,

!

taking b = a), frow which we see in turn taat

0
| @]
n
o
£

The last two relations indicate that the notion of boolsun

Ting coincides with the notion of coimsutative 'Ze-algeara

every element of which is idexgotent.




Introduction into a booleén fiﬂg’ of a rellat:i.on <
defined by a<b iff ab = a defines a paritial order
waich converts the boolean ring into a distributive
lattice;withlzerc and relative campiementatidn. Indeed,

aAb = ab, a\/b =a+ab, a-b =a+ab.

.

conversely, each distributive lattice with zero and
relotive couplementation is converted into 2 boolean
ring by the definitions

ab = 2a/\b, a+b = (aVb)-(aAb) = (a-b)\V(b-2a).

Thus the notions of boclean ring ond jistributive lattice

withz zero and (neceszarily unigue) relative conplemantation
coincide.
In a similar way, it can be establizhed that the

1

notions of boolean riny with unit element, distributive

lattice with complementation, zund cowutative Z2-alaebra

with unit with sach element idempotent,2ll coincide.
Such 2 boolean ring is called unitery. i

0oe checked that any of tie three interpretations for 2
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"G,

(unitary) boolean ring yields tie szme definition of.

a morphism as another, wnich we call a Qunitary) boolean

nomomnorchisn.

e,

The element (a-b)\(b-a) being, on the one hand,
the sum a+b of a with D and, on tae otaer, the

traditionally-named symmetric differenca aAb of a

anad b, we shall henceforti denvte the addition oueration

in a boolean ring by /\ rather thon by +, aad write

n n
A in place of Z ; however, we shall use interchangeably
i=1 i=1

the notations ab and a/Ab for the product of a with
b. Observe, incidentally, that aVb = aA bAsab is

what Jacobson {/5, <1 cﬂ would call the circle comnrosition

wt

of a with b.

Let A be a subset of an arbitrary lattice B.
An element a* satislying

v

(a € i) => (a<a*)
(b € 8, a<bdv WV a & i) = (a*< 1)

is called the union, sunreium, or leact ug..er bound of
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L3257 o

the elements of A and is deaoted (if it exists) by
B

B
(lolol) a* = v -I:L = g ad .
A

-

(=9

Similarly, &an element a, of, B satisfying

(a € 4) =>{a,<a)

(bE B, b<a WV a EA.). =3 (b<a,)

is called the intersccvion, iafiaum, or greztest lower

bound of the elements of A and ie denoted (if it

exists) by
B B
(1.1-2) a* = A-:l. = /\ e .
a €& A

A lattice is called conrlete if all uunions and interscetions

exist, bouwndedly comulete if 2ll urions (intersections)

of subsets having at leust one upper (lower) bound exist;
a lattice homomorphism is co.nlete if it preserves whatever
unions and intersections exist in the domain. Incidentally,

3 B
the similarity of tie symbols \/ , /\ with the symbols

0 ®
V, /A and l\<) " /\0 can lezd to no error since
i=! 1=

B . W 3
xvy = I\/{'}C,y‘} k) '\/g(:i) = \/{xog xl-g x2, o-oi'
1=,

B o) 8 . '
x\y = /\{x,y}, and ,Ab(xi) = /\ {xo, %, ...} p
1l=



If the lattice B is clear from tie cuntext, we orit
the symbol B occurring in formulae (l.1l.1), (1.1.2).

an eleient of a boolean ring is called a gzoma (thais
is Jjust as reasonatle as calling an -element of a Banach
space a vector; of a topological space, a point; oxr of a
differentizal graded module, a chain; and is moreover
justified botk linguistically (b;-;r Carathéc;dor;r EQ oy ll})
and historically (by Gotz [}/, footnote onéb). if =
and b, then, are so;ss in a boolean riny, we say a is
a gubsoma of b, or b is an oversua of a, if a<b;
we say a and b eare disjoint if &a/A\b = 0. Further,
a subszt A of a boclesn rip; coasisting of pairwice
disjoint somas is itself called disjoint, and tae union,
if it exists, of a disyoint st A of somas is called a
disjoint union, and is svietiies denoted by \>( a .

a € A

The following infinite distributivity rules are valid

for any subset of a disztributive lattice B :

B Y g
(1.1.%) \oeB' Va ¢® = dA(Vaul|= \/Uma.)
: GEA - \QEA aeh



e
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B [ 8 B
(1.1.4) bef Nae 8= tviAa] = Al

' aeh | AL ach
Vhean B 1is a booleun ring, one has also Deior,-n's rule:

if a<b for all aE A, then

(1:1.5) « \/a € B iff /—\(b-a) € B,and
a € 4 a € a

o= \/a- fN\e-a)
a €A a g 4
A (unitary) boolean ring in which all countable

unions (resp. interscctions) exist is called a (unitary)

(1.1.5) that every S-riung is a %*ring, and hence &
emented O-lzattice. From

is a 6-ring. A

‘(uaitary) boolean horciorphism between two (uaitary)

§-rinys (resp. g-rin;s) is called a (unitary) G-morphism
(recp. S-rorohisn) if it prcoerves countable unions (resp.
countable irts»secctions). That each S-morphism is a
‘%fmorphism, and hence & homomorphism of.G—lattices,.and_
that each S-morphism tetween two G-rinzs is in fact a

@ -norphism (more generally, tiast each,g-morchism Hreserves



(/!

whatevgr countable uniéns arelpresent in the domaina) are
further consequences of Delorgan.

a boolean ring in which 2ll intersections exist is
cailed /\-complete; if 2ll unions e#ist, complete. A4
boolean ring is complete if and oxnly if it is uaitary
and /\-coxzplete.

'These facts are developed more extensively in

-t

Birkhoff [/‘], Caratnéodory l}ZJ, and Sikorski lgsj,
where, in particular, proofs of the assertions herev.ade

can be found.




lp!

whatevqr countable uniﬁns are present in tie domaia) are
further consequences of bemorgan.

A boolean ring in wﬁich all intersections exist is
cailed /\-complete; if all unions e#ist, complete. A
boolean ring is complete if and oxnly if it is unitary
and /\-coxplete.

'These facts are developed more extensively in
Birkhoff [/ ), Caratnéodory I;Z} , 3nd Sikorsiki [,;zsj,
where, in particular, proofs of tas assertions hen;;a@e

can be found.
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l.2 Unification

Let 4 be an autonowour category with tencor

products (cf. (0.5.1%)), and form the subcategory R(a)

WV

of 4 = lior(4&) whose objects are the A-morphiszms
m: AQA —> A for which the diagrams (of maps in i)
AQA AG A

u2.1) tw A and ARA®A

3 i ,

ABG A = A®A

ck

where tw 1is the twisting automorphism of A®L, bdoth

LA®& Al BA
commute, and whose morpaisms R(4) (o | , ' ,L are
1 ha ]
FrS 4

those lior(i)-morphisus ¢ = (;250, ;a’l) for which

[6]

,do = ﬁléb ;51 o ° Thus the target functor T

.

(ef.e (0.%3.9)) gives rize to zn immersion R(4) — A

AQ 4 A®N )
identifyinz R(4L) [n J, , @' J/ with the set of those
= = %
X it

A-morphisms f: A4 —> A' for which the diagram

i@ £2L o e
(1.2.2) l.m '

v
A -———f—)' A

13
3"

commutes. For this reason, the R(d)-ovject

AY L —>

[
-k



is abusively denoted” 4, n 'is called the aultinlication
on A, and we tead to thinik

L.2.3) R, a0 C 2@, 4.

R(4) is thg socalled cate;ory of (commutative and
associative) d-alpebras (commutative and associative
fefer to the commutativity of diagrams (l.2.1 ), which

of course needn't have been reguired). An A-algebra

m: A®A —> A is called idermpotent if the coupozition

14 Lo L4l 14l Y \4&
is -idli'\l-l , where d is she dia_onal map and @ is the
underlying function of the bilinesr map aszociated to n.
Where (L is the (concrete, autonomous, eguaticnal,

Tre
da=—

pointed) catezory of modules over the com .utative ring k,

iy

'(kg} , which we denote ké , is Jjust the catezory of
(commutative, ascocintive) k-algedbras and k-linear
nultiplicative homomorphisms; R(4G) = E(Z§> = Z@ is the-

category of rings; 2{3) (resp. R(8.)) is tac catezory

of (comu., assoc.) monoids (resp. with zero).
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m

" An é—al;g,ebx_‘a A 1-'-.'_ilth m@lti‘plication 2 h
unit if there is a point u, € la| for waich
m(a, u,) = a for all ag |a] ; such a point is
unique, if it is present, and is called the unit of 4.
The subcategory of R(4) coasisting of a-algebras

/
having units and unit-preserving 5_(.5.)-morphisms is

.3
denoted R(4); in the speciul case 4 = ,li, we write

-~
14 , and we have the usual k-algebras with unit; algebras

unitary .
In each category h=', the object k (assuming
the ring Xk hac 2 unit) is-a free object generated by

a singleton (cf. (0.5.10)), the functor & k is

m
I3
far

s o=

naturally equivalent with 1 ‘'« Thus k{l is the
k =

e
Fa

B

subcategory of k.t_k wihvse objects m: AQA —> A adnit
a (necessarily unigue) jJi-morphism w,: k —> A such

A@l; a~r
that the dizgram id,®u, J/ N,

£@A7 B

comuutes, cnd whose



£

=¥

morphisms k')

(4, A

¥

are those';morpi.lisms £ e k.:j:(A, A')
which preserve uaits, i.e., waich satisfy i‘-uA = U, .
One easily chek-zks that k.zx(k, A) = fuﬁ, so that k is
a left zero in lc‘f:"" also, a k—dlg,ebra is ideapotent iff
.the inclusion (1.2.3) 1{Jé.(k., 4) C; kg(k, A) CQQ.A) is
a 1-1 correspondence."

The category B8 of boolean rings and‘boolaan-homo—
morphisms_can now be defined as the full sgbcatégﬁry_of

Z& or of 7 A whose oojects are ideupotent; the remsining
2 o=

subcategories of Z 4 walca are of interest to us are:

2

3 =ZB(] 1 . unitary boolean rings 2nd .

=" =t1/,2 ° unitery boolean homcmorphisms

B : B—r;an and g—morJnls;s :

N ¢ O-rings and ¢-morpaisms ;

é = Gn Z.;. witery O-rings and unitary &-morphisme
2, 8 =-also eccllied,

La § N 7 é) G ~rinzs and &-morphisms .

of

Dach of the categories i, ,a, 2, 3, 3, g s 6 5 &
is egquationzl; indeed, the operations and eguations can be
so chosen that each has countable rank and that each of

the functors (indeed, imzersions all) in the dia,rax
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o
-

(1.2.4)

Tl A (x € 7a)
1
g R X ot R Sy
Il
A I
L\

]
-4y

I
1}

|

2

is a composition of functors of the type considered in

(0.7.7), and hence hus a left zdjoint.

The notation we adopt for tascse functors and their
left adjoints is the bare minimum: tre symbol for the
functor will be its ranpe catesgory, excent that when no
clarity is sacrificed, a fuﬁctor in (l.2.4) will be denoted
by absolute value bars or evcn not &t all, ernd a left
adjoint to any of the five lower vertical Iunctors will

be vritten as *, and called uzification. Cne should

alvays keep in mind tiie earlier remwrk (comcluding $0.5)
that a left (rigat) functorial reprccentation preserves

£

left (rizht) representations; in particuler, if ezach of



4

two functors F, G has a left adjoint X, Y, then

GeF hoas as left adjoint X°Y, .each of our functors

| | preserves direct products, and each of their lc}t
adjoints (in particular! unification) preserves direct
suns aud free objects. Should confusion be ligcly to
arise as to which category a di éct sum . @ _ | is
being formed in, the cztegory will accowpany tie :gmbol

for tie sun, as @ ..., for cxample (no such zonfucion

We remark that each of the categories in (l.2.4),
with the‘exception of tre extreme top and bottom ones,

R
has a zero object, hence is-;ointed, cnéd vie may speak of
kernels and coxernels of maps; these are related to
quotisnts by eguivalence relations, as hinted at in (0.5.11),
as follows. If f: & —> 3 is a morphisn, let S’ be the
eguivalence relation on |A| determined by \f|, i.e.,
x(’y iff f£(x) = £f(y). Then ker f = ix/xco&.

Likewise, let g' be the eguivalzsace relation on \5[
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generated by the relatio; ' ?o -defiﬁed by £(x) fo 0 for
all x € |41 ; then coker f = B/f' .

We pass to a more detaiied. exaniration of the
uaification functors “: K —>E% (X = 4, 3, 6).
To this end, let |A ] mean the underlying k-module
of the K-object or I_E_:-ob;ject A (a;:,*ree X = 22 vhen
X=3,6), 80 that 4 "is" a k?;i—:norphj‘.sm
m, JLA] R JA] —> |4] of the type descri'bedle.t the

beginning of this section. Define &d to be the composite

(Jalx )@ (fa)x k) —>

li2

—> (lal @ [4]) x(Jal@ k) x (k® |4]) = (k@ k) —

114
e
e

~AATL o3 :
X addlixid, .

y |
> (4] % J4] =<]Al)x k = [A] =k ;

‘
B

aX

Ak

; i X gnd. i, (14 4 ]
let Py € l{.;;.(} \{xk, k) an i & l:‘f(] My JA]x k)
be the canonical projection and injection, respectively.

(1.2.5) Unification Lemma. ‘here X 1is one of ths

categories ,4, B, S, and | | is the "underlying k-module"

X

functor of (1.2.4) (take X = 7, vhen X =3 or o ),

define ITLA, ‘Pys i, as rbove; for all A& in K. Then:

BRI i — - — ey e
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ole ﬁA - is in 'I§ v Py and .‘|.A come from X-morphisms;
the canonical injection u: k —> |Alxk 4is a unit, so that

:'&A is in g; the canonical injection i, , qua K-morphism,

Kp

is universal’ for the functor fé > K > S, so that A
"is" @, : (1A1X k) ® (1Al x k) —> (1A xk) ; p, (resp. i,)
is the universal element making k the cokermel of i,

(resp. A the kernsel of PA) , so that, in particglar,

Py is a f_g-—morphism.

n=p»

2. There is a productive left zero in s namely,

the ground ring k, and assignation to A & K of JE

L defines a fu.ncfor

A—>x in K
p: ¥ —> &'

which, together with the functor composite
£! — Mor(R) —> Mox(x) <5 x,

sets up an equivalence between the categorles K and I:{! .

Remarks: The theorems of §80.9 and 0.10 are available

to transfer costructures from f.g to X, by virtue of .2.;

they will be invoked merely by reference to the present theorem.

Observe also that, as & consequence of .l., the diagram
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A < & s

72 <2
(1.2.6) l* L* l‘
fe—3e—3

commutes|(to within natural equivalence).

Proof: .l. When K=, A, this is all known, and

k=
it is easy to see that when k = Zé ’ idgmpotencé of the
Za—algebra A implies idempotence of the unification A .

Thus the case K = B is also taken care of. Finally,

when X = ¢, observe that countable unions in the (at any
rate) unitary boolean ring i, : (lAlX Z5) ¢ (141 YZZ) —(1a\ ¥ 7,)
are given by the forﬁui" |

(00 [e0)
(1.2.7) Vi, £)=( Va, - Na , VE)
1=0 ¥ Tge0t ga1t 7 ga0 277

which also shows that Py and i, are G=-morphisms;
this essentially finishes the proof of .l.

2. 1s an immediate consequence of .l., as is the

commutativity of (1.2.6).
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1'5. Tensor Prodﬁcts

The notion of tensor product can be eixtended fronm

an autonomous category 4 to the category R(&) of
(comm., assoc.) A-algeopras, in such 2 way that the

®
two composite functors R(A)XR(4) —>axi —>'4 and

; e _
R(4) = R(4) — R(4) —> 4 are naturally equivalent.

For if m,: AiGD.iai it Ky (i =1, 2) are A4i-algebras,
define m: Q‘11®A2) ab@l@;lz) ——9-A1®A2 as the couwposzite
| ia, @twist @ia,

<h
4 i

Y (e} i, @ L
iy BAy oy Sl
l ml & ma

2

Since . (ml@’ mz){id@tw Did)(tw) = ((ml-tv::) @(L’:E'ta‘:})(id@ tu @id) (tw)
B (mls 1312)(13'.‘.’@t‘ﬁ)(id@t‘.‘.‘@id)(tw-} = (mi@ nlg)(id\g‘bwﬁiid) .

the first of diagrams (1.2.1) comautes; a similar calculation
shows the other comutes too, and our aszertion is validated.

lioreover, if both Ay and A4, have units, so has ;116 Ag e
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i

Write both &® and tane ascociated tensor product

M
o)

in ,4 as ® except when k=7 or [/,, in which cases
K :

write simply (® and X, ‘respectively. The tensor product
'd .

A®B of two boolean rings is again booleun, since the
2 s

idempotence of A and B implies that of A@®B; however,
2

no such statemant is true for §€-rings or for Qo-rings
(unless one of them iz finite). Still, examination of
the situation in boolean rings will sugzest an appropriate

s 5 ; C i
definition of tensor product for G-rings and Qo-rings.

For a fuanction £ €

e

(4xB,C), define f_ € s(8,0C)

(a €4) by £,(b) = £(a, b), and define £° € §(4, C)

(b € B3) by £°(a)

- —

£(a, b). If 4, B, C are in .4,
then f is the bilicear map corresponding to sone

k._'r}—morphism- AR B —»=C if and only if each fa and
- k

each f£° not oaly is =& kl_éi-morphism, but also satisfies

i‘b(a)fb(a'} P (za')

£,(0)0,(0") = £ 5(00") .

Conseguently, if 1:-2‘1 ani 4, 8, C are boolean,



i

1S

f corresponds to a 7 A-piorpoism =~ i.8., & Semorphisu
5= =

~-- from the tensor product 4a®3 to C if and ornly if
' 2

b b [ b2 [] b 1

£o(a)f¥(a") = 27 (aa') = £9(aa') ,

fa(b)fa(b') =.f°2(bb') = fa(b'o');
and each f., £° is a = L-zmorphism, i.c., iff cach
- Zg“ :

2 3§ £ is boolean homoizorphism. 4hus it is reasonucble
a 9 I 5

to reguire that the bilinear waps to be used in the

category & should be those f € 8(ax3,0) (&, B, and
; s L5 fo _ _ o

C ﬁ;rlngs) for which each f_, £~ iz & O-morphisa.

Before giving a foruxl definitioa, we reiterate the fact

that, as a consequence of Delorgan's rule (l.l1l.5), each

6—mornhiszi between twq E;rings preserves vhavever
countable unions arc present in the domain, sc that a
S—morphism between two §-rings is alreudy a §-morphisa.
The rest of tiis cection should be read twice, each
occurrence of @ Teing replaced by % the second tine

around. ILet I be an indcx set and Bi y for exch i in

I, a §-ring. Iet £ & S(B, C), where C is a G-ring



and ><ui, let JE& I, and let & X 35

_ LTty
(by conventioa, I has at lesst two elements);
fj,bechj’ C) by the formula ’

(1-3-1) f.j,b(ba) = f(a)s "‘m a= (al)leI and, ai- | . . .

(1.5.2) Definition.’ 4n element f € S(B, C) is

called a 6&-pultilincar (or 6-(card. I)-linear) map fronm

(Bi)ieI to € if
(1) emeh £, of (3.1.1) €
(7 ]

[=]

o9} = ) o O =
(i1) £(CAD®) = A £(0"), where A e
s=1 e=1 S=

The set of G-multiliresr maps from

denoted I.:ul{(Bi}iFI ,C) or ;-.-;S(C) . A left representation

(which is clearly a functor ¢ —> S) is called

a &-tencor product of the fanmily (B, )l =} and is

denoted @S‘ Bi 3
161

c), ul({g, C) =

O,

Convention: Mul(B , C) = 6(B
Gthere |} is underlying set) cre the conventions for card

I =1, 0, vrespectively.
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Rexarits. Condition (ii) is a consejuence of condition
(1) in ciase the iﬁdex set I is gt nost ccuﬁtable, which
will bec the only case of interest later. Oznission of
condition (ii) in the seneral situation leads to anotiaer
notion of ultilinearity, and hence to another notion of
tensor product. It reiains to be seen which it more useful.

The proof of tze following theoren résemb}es the
proof of the existence of direct sums in ecuctional
categories .(0.7.58), and is eseily adupted to the case
in which condition (ii) ic omitted from tihne definition of
multilinearity.

(0.%.3) Iheorem. . Zach _family (8:) €1 has
a tensor product. Proof:

The comments after (1.1.5) and the definition (1.5.2)
indicate that a Sunection f - 3(8, C) (where azain B
is the direct product of all the Bi '$) is 6-multilinear

if and only if each of the equations below is saticfied:



@ @ -
1) £(ADP") = N\£(®7) ,

s=1l s=1

'2 (ﬁ bS e S
¥ Bty Bl DNEalE 5

3) £y, (I A = £ b(’ol).& £ 5063
Let §: 8 —> G denote 't"le left zdjoint to the underlying-
set functor ¢ —>S (vhich laiter will have no name), and
'lét vy € s(B, 6B) be *-“e universal ‘element for 6B (the
includion of the generators. (In general, y is not

G-multilinear.) Under the correspondence

an element g E 6(63, C) coumes from an element £ in
MB(C) if and only if

.
117 Diyc/\o )) z( A\ y(®°)) ,

2=

1
. (09] S F‘CO s
2') g(}:.j,b(/\ O;j)" = 6{ A % ,(3)) ,

5') &y b(blAb”) = 8l b\o‘;‘)Ayw(b?)) ;

g d

. - -~ 4+ ! T . == "
for g corresponds to f = gy, and fj,b_ 8% e

Consequently, if r ic [the eguivalence relation on

'
f
i

| _
§ B zenerzted oy all t;he relations

;i_
/

/

[
{
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1) 3 (A AT
s=1 g=1

" o Sy >y s
2 B CAD | A gD

o 1 2 1ly- 2
5") By A § G oD Ay 00,

and we form the quotient dy ﬁ of ©68B 1in the category
6 , we see immediately that an element g € o(6'3, C)
satisfies g(x) = g(y) whenever xgy if und only if
gy is G-multilinear. Thus, the natural transformations
o g‘ ~

u‘(GB/j’ sy C) —> 6(63, C)

; < i =

E*B(c) — *;5\%'3" G) — G(GBS C)
induce a 1-1 correspondence between i,(C) and G(G‘B,(" s C)
which is the natural equivalence required in order that

L - luct family (B, ), 3

Su/g be a tensor product of the family ( 1)1 &
This proves the thcorem.

(1.%.4) Theorecm. If the index set is at nost

countable, and if each 2, 1is a F-ring, then
q
@e ~41
1 €T
Proof: Observe fir:t of 211 that &Bi has o

i€1

12

5
C’fal
c__-o-
LL

n i
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unit: namely, the imaze, under the uziversal element
in Jig( ®, 3;) , of the unit element of | >< 3;
i €1 i€1I
licreover, an element £ € 15(C) gives rice to a
g-rorphisn ®‘ Bi —>C 1iff condition
i€

4) £(1) = 1
holds in adlition to 1), 2), and 3). Thus, where
f’IB(C) is the subset of ‘;—.'iB(C) consictinys of those

g—multilinear maps that satisfy 4) too, we obtain.

an equivelence, naturcl in C (in &):

present a natural ecuivalence

(.3.50 X85, o =i .
1€1 .

Accordingly, let £ € Ii5(C) and let (fi)i€I

=3 ><8‘(3j_ , C). Detine u(f) € X &3, 0)
i€ i€l

and ‘I‘((i‘i)ieI) c fIB(C) as follows:



il i e i

R e e oo L

Tare

e ek e

T, e D)y e = A g )
. i€I
(here the symbol "1" occurring in the exprescion "Ly
. ?
designates the unit element of ;K: Bj). Then
JC I~} |
(E(’-’_j ((%)161))21(bi} ae (ﬁ' ((fi}i € 1}}%}_(‘3&} =

- B eP@ Gy =g 31D
= NAf@) = 500,
i€l
so that
@EA; e My = £y
whence
| 3% (e = (Bher o
i.e.,

@+ ¥ is the identivy.
lloreover,

ir(((ﬁ(f)}l)l E I)&bi)i € I) = i((fi,l)i €I> ((bl)leI) =

= A\ 5 0 = 2(®); 1)
i€ I
so that
g (alf) = ?(((5@))1)16 ) =i,
and <o
¥ 8 is the identity.

Thus & sets up a l-1 correspondence between the sets

in (1.%.5); we omit the verification of naturality,

whici is straightforward ard coupletes the proof.
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1. 4 Tensoring is exact
In any pointed category, a pair of maps f£: 4 —> 3B,

g: B—>C is a short exact 'ggéluence (8.6.8.) if £

is a universal element in terms of which 4 = ker g and
g is a universal element in terms of which C = coker f.

‘Instead of "(f,g) is a2 s.e.s.”" we also say

"O—-—')A.-g-—bB—-EE—:&C—-——}O is a z.e.s." In an equational
pointed category, 0——)1?;.—1‘—-;-3—@’#0—;0 ;‘Ls a bs.e.s_.

if and only if £ is 1-1, g 4is onto, cnd z(b) = O

&> Ja & Asuch that b = £(a). It need not, of course,
be the casze that every onto map (é—epimorphism) in an
equational category is part of a s.e.s., nor that every
monomlorphism be. In the category of distridbutive lattices
with minimal element, for exzmple, there are onto maps
whose kernel is the zero object, which yet are.no‘c 1-1.
(E.g., let X Dve a set, and let L(X) denote the lattice
of non negative real valued functions on X; define

s: X gy 2% s Where ok is the lattice of suvsets oi X,
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by s(£) = {x/2(x) # 0} . Then s(f) = @ iff 1 is
the minimal element of L(X) , yet any two functions
nevexr tdlcing the value zero are identified under s.
See Gof-fman C9] for further remarks.)

ﬁ the category o , fortunately, every S-epimorphicm
does fib into a short exact sequence. Not every
G - mononmorphism does, however. Ind'eed, & G-monomorphism
f: A —-')B fits'into & s.e.s. iff tne implication

b f(a) => Ja € 4 such thct b = £(a')

is valid for all a € A and 211 b € B. These facts can
be found in the first chapters of Carcothéodory's book {27,
for example. Such 6&-monomorphizas zre called O-ideals.
If S€S and f & 3(8,B) (BE6G ), the G-ideal
generated by £ is by definition ‘i':h;a_ universal element
for the kernel of the universa glenent for tie colernel
of the G-morphism 6S —> 3 correcsponding to f, or,
what is the same thing, the universal elexent for the

kernel of the canoniczl projection B —7-—9-3/&., where



A

'f; is the equivalence relation generated by
-f(a)ﬁ.o,all a€ s, :
and E/Yf is the quotient in 6 of B’ by g: .
“he G-ideal generated by f can also.be described so:
form the subsaet of B consisting of those somas b far which
@
aai €A (i=1, 2, ++s) such that b < V£(a;) ; thiz sst

' i
. i=1

is 2 6-ring, the incluszion is a §-morphisa, and that is

the €-ideal generated by f. This azain is extractable

from Carathéodory's book, =s is the fact, finally, that

O—>A Lt BLaml—20 iS5 2 S.c.5. iff

o2

is onte, f is
an ideal, and C == coXxer f.

The sitgation iz zimilé; in the cateiory S ¢ every
S-epinorphise in g is a cokernel (or rather, the uvniversal
element for a kokernel), and a moxnomorphisa in 'S is (the
universal element for) z kernel iff each element in the
target S;ring which is a subsoma of 2 countadble union
of images of elements of the source %-ring (recali (0.3.9)
for source and target) iz itself thelimage of a sora in

the sourca.




A short exact sequence 0—silems Emar—so 45

’ . (] ]
said to split if there is a s.e.s. O—s=A"Ioi By 0
such that
(1.4.1) g'f' = idA" and | g"f_= id:l‘ .

We also say each s.e.s. splits the otner. In such a
case, the pair (g, g') :i;s 2 universsl zlewent In terms
of which A = A'XA" | and, in either B, €, or S,
(1.4.2) fleg(a) A £-¢'(a) = a  (iefly, £'eg ' glef -:IdA).
Conversely, if, in any of the categories B, 6, S ]
' morphisms f, f£', g, g' with source and tarpet as above
satisfy (l.4.1) and (1.4.2), it tollows from (0.8.4)
that £ and f' are monumorphisms and that & and g'
are onto. loreover, setting a = f(a') in (l.4.2), for
any a' € A', we have

£(a') = £'eg(f(a'ND N £eg'(£(a') = £'-g(£(@a') A £(a') ,
gince g'(f‘(a')) = a', whence f'.g(f(a')=0. Since £
is a monomorphism, g(f(a') = 0, and so, since a' was
aroitrary, g°f = 0. 4 similar argument shows g'ef' = 0,

Finally, if g(a) = 0 (a€& 4), by (1.4.2) we have
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a=f'wg(a) A £g'(a) = f(s'(i:t)) )
whi-ch shows that Ig(a) = 0 -==>é = f(a'Q} for a's= g'(#)eﬂ.‘.
Thus O_ﬁ-A'—f—)A-_-‘E-)A"——bQ is a short exact seiucncs;
sinilarly 0-—-—-—)1-1"-1-—'-54&—?"-'—);1' —»0 is a s.e.s. and
(0«4.1) shows they zplit each other. Arguiiy a little
further in this spirit, one can prove ((.om\mfe (O‘iS)) L
(1.4.3) The i‘ollo.wingg statemnents ar:; e.;uivs'-.le_nt.
i) S.e.ss. (f, g) and (f', g') split each other.

ii) (g, 8') iz the universal element (canonical projections
on the fzctors) for a direct product.

iii)- f, g, £', and g' satisfy (d.4.1) 2ad (1.4.2).

The zoal of this zection is to prove the statenent
which is its title. "To tais end, we state

(L.4.4) Lemma. The functors @B: B e 33 (3 € B)a
@BB: S-—-a- §(B 63):—', and @o_s: 66— 6 (BE ) all
send split s.e.ss. to split s.c.ss. Proof:

Let O —> Al == 4 —?i—»-;"——a-o be a split s.e.s.,
so that the;‘e is a 8.8, O —> A"-i:—a- A —E-’:-b-h' —_> 0

such that (l.4.1) eand (1.4.2) hold. Tensoring ‘everything
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in sight with E (in the relevant category), we et maps
f®B: A'®@B —» A®B , f'&B: A"®B —>» AQE ,
g®B: A®B —> A"®B , 3g'®B: A®2 — A'®3 ,

vhere (X)) denotes the relsvant tensor product, and.we see

(5®5}(f'®3) (E,‘f'}@B o id_q_u®3 - id-r.r

A'®B.°

(g'® B)f@B)

(3'*f)@B = 1d,,®B = id,

‘@B ?

(£'@BWE®B) A (f@BX5'®3) = (£'-5)®BA(f-3') ®3

= (£'p) A (£f:3') @3 = id,. ®B

inA@B .
Now (l.4.3) guarantees that (f®3B, g®3) is a s.e.s.
split by fhe 5.€.5e (f'@;B,Ig'égB) , Wwhich proves

the lemma.

Lenna (l.4.4) ané the lemma which follows the definitions
about to be made are the main tools in the »nroof that
tensoring is exact. Let A Dbe & boolean ring,-and let
a be a soma of A. Define

A, = {b/-bez‘;, v<at,

A-a=3v/bC 4, bAa=0},

let £ (resp. £') be the inclusion of 4. (resp. A&=-a)

in A, &nd define g: A —>i-a, g': A —= 4_ Dby




g(b) = b-a

g'(b) = a/\b .

1t

b [_5 (a/\ﬁ) .

Using (1.4.3) it is easy to prove

(1.4.5) ZLemaa, Let X De
B, %,G’. If a is a soma of

then A, and A-a arc objects

a

f, g, £', g' are K-morphisms;

O—-—)Aa—i—-).&-—?’:—»ﬂ— a—=>0 and

are short exact segquences in K
Ve can now state and prove
(1.4.6) Theorem. The func
(&63: g-—hS(BES) s and ®O_'B

short exact seguences and their

£

—_

g

Al ——

Y

Q — A A'—» 0 is a

of the cotegories B, €, g, and B

same category (and (f', ') spl

f®8

——

86935

1
Y

0 —» A'@B A®B
(vhich is split by (£'@3B, g'@3B))

tensor product.

'@3 —» 0

one of the categories

an object A of X,

in and the maps
both

£1 "}l
Q—>i—-0—>i -‘-l-a-Aa——b 0

that eplit ezch other.

result of this secHm.

nixd
nad

tors & 3: (B€ 3),

: 6 —= & (BE 6 ) preserve

eplittings, i.g., if

snoxrd eXsc

t sequence in one

-

an object of the

its (£, g)), then

sy Where ® is thz relsvant




Proof: .This result in tnre c:.l.se'.of %B: 3 —>3
is an immedizte cénsequence of the known corresponding
resu]tt for Zaé «  The proof for @ B: 6 —> & will be .
given in detail; replacement, in'tnis proof, of eucha
occurrence of &§ Dby S y 4and Some odificationswhich
we shall make explicit during the proof, result in a
proof for the case ®3B: g-—-—-?g o

That -(g@%BO'(fQ%B) =0 follows frowm the identity

(66.3)* (@) = (5083 .

That g&%B is onto follows.from the factsz that g;(B;
AXB —> A"xB3 1is onto (since g and idB are onto).
and that ﬁ(chB)-—ﬁ>AP?B' (the canonical ?rojection
used in tiae proof of (1.%.4)) is onto, i.c., from the
Ifact that Nﬁ%B is generated by the image of the_univergal
elewent A'xB ——»dHW¥B.

To see that f£®I is 1-1 :nd thet (g@i_B‘)(x) = 0
=y ¥ = (f@%B)(y) for sonme (necescarily unique) y G:.EQ%B ‘

we use tne following device. For each a in Ai', forn
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A‘a , and let i &'a — ' be the inclusion. ‘iz know

from (1l.4.4) and (1.4.5) that both maps obelow ars

monomorphismns and §-idecls:

LY

ia(ﬂ B: A' A3 —= A'® B
- . G s‘
CLeBba?) '

(f-iajesa: 488 5 ve B —>- 4838
Nexﬁ, where +t: A'X3B —-——‘r:‘a’é&B is the universal element,
let T, denote the set of somas J.n R'@\_B of the .form
a@sb = t(a, b) , end if T}‘ has been defined for all
ordinals A< lo (Aé a countable ordinal), define

T)-o = ‘ix‘/ % € _.-:-@Q_B, 3 A::mr< 10 and soias X

78
2
>

% > S such that =
Arnr
(For g-rih’gs',- the definition of T\ (A>0) 1is to be

modified by omitting the r-indexed union 2nd the index »r.)
In view of the fact that ’.!?O generates A'%B, it follows

from Slomifski F/A Chap.II, (2.%)| (or, on the case of
L : § 3 .

§ -rings only, from Carathéodory LE y ‘3553) that every

soma in A'®B belonic to some Tl with ). a countable

= . ol

ordinal. From this fact, vie prove by induction:
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(1.4.8) ‘Evcry soma in A'@e:s is obtained as a
value of some ia®"_B e Proof:
Every element of To is so abtained. Let ’\o be
a countable ordinal, and suppose that cach soma in each
. o 8 - m -
T,\ (}(lo) is so obtained. Tet x &€ I say

0

A AV (for §
x = - X for -rings, again, omit the
a=1 n=1 r=1 "°F .

r-indexed. union) , with Xy € T&nnr and kmnr‘( f.lo 5

choose somas a. .. € A' such that x is a value of

mnr

,
i, ®°_B, say X,.. = (ia @B}(;rmnr) (for b—rings,
nnr

it is harmless to assume that x__ < X, for each m, n,
and one chooses somas a, € A (m=1, ..., ¥) such that

X , and hence also x_. (n >1) is a value of i B,
ml mn - a;1n

80y X -(iamc%'f)(ym)) . If a denotes the union, in 4',

of all the &, .. (for g—rings; of all the am) y We sce

aE m=1 n=1 r=1 “unz
A A VOG- e | A AW
= A / (1, ®B)(y = (1,83 7
n=l n=1 r=1 °0C s = £=1 n=1 r=1 BF
S N o)
4] bie = B)(= s = 5 =
(for rings, X (ia% )(JM _1) s, S0 X a n/-_—\l .

have proved the asgertion (l.4.3).




'intl; (1.4.8) vwe can now ghow .a‘.“ﬁ’B iz 1-1 2nd an
ideal. From heré on, the éxrg-,ﬁments are valid for either
6-tensor product or S-tensor product, and we write
simply ® . To show ij@B is 1-1, it suffices to szhow
that CQOB)(b) = 0 =>b=0 (b€ A'®B) .. So assume
(f®@B)(p) = 0; using (1.4.8), write b = (i, &B)(c) ,
where a € A' and ¢ € &' _®B. Siace we then have

0 = (£®B)(b) = (£ @3)Xi,®3B)%c) = (£-1,)@®3Xe) ,
the italicised statement preceding (l.4.7) indicates that
¢ =0, so that b is indeed zero. In a similar way, we
show f@®B is ,_n ideal: if x € A®3, 7y € i®B, and
(f@B)(x) By, use (1.4.8) to write x = (i,®B)(c)

(a €A, c € A®B); the itelicised stotement precediag
(1.4.7) then indicates that 4 4 € A'_ ®2 for waich

y = (£1)0BXa) = (£63)(1,®3)(a) ,
which shows f®B ie =n idzal.

Ve are almost done: it remains to be shown only that

g® B iz the universal element makirg A"©3 the cokerncl
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of f@®B. The fact, mentioned at .t‘-.ze Beginning of the
proof, tha;t (gsB)(foB) = 0; and tne definition of
cokernel, indicate that there is a unique map

ol: A@B/A'Q@B —?A"QE}' (A ®B/4'® B denotes coker(®3)

such that, where p 1is the canonical projection, the dizyrsm

A®B — BO2 > A'®3B

e

‘CL 8 B/-t'.';' @ B

y

com:utes. That of is onto follows from the fact, also
obtained earlier, that g®2 is. Fow let {5 be the

map corresponding to the bilinear m:p £ & iml(a", B; 4@ B/A'® B)
defined by: d4(a", b) = p(a®b), where 3 (a) = a". The
defintion of ¢ is ur;:mbié_;uous, since if g(a) = g-(al) = a",
there is a soma a' & &' suck that a /\ ay = £(a'), and

so 2@b /\ a;0b = £(a')®b = (f®B)(a'®b), whence

p(a®b) A\ pa;® ) = p(a®b A 2,0b) = p(£eEXa'®do) = O,

so that p(agbd) = p(a;®@b). Notice xﬁ,(a".a b) = £ pla®d) =
= z(a)®b = a"®b, where a" = g(a) . Thus :

(1-4.9) £y = id "@B .
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we shall have

If we can show that = id
iy /3"" . A®B/i@B’

established the desired equivalence between A"®B and
coker (f®B) ; since the canonical pr‘o.jection p from
ARB to A®B/A'@B = coker (f®B) is an épimorphism,
ﬂg{, = id!;@]%/ﬂ'@B will follow from /@o(_p = p. Now both
p and /4&:[) correspond to dilinear maps from A3 %o
APB/A'®OB, say #' and 4", respective‘ly, and F:{p = p
will follog from g" é:ﬂ‘, wirich we rnow prove. Indeed,

g'(ay, b) = p(a®b), and

#'(a, ®) = fxp(2®b) = fAxf(c(2)@D) -

= ﬂidﬂ.‘pﬁ(é(a)@b) = ﬂ({-s(a)GDb) = p(a@bd) ,

by the definition of /3 aﬁd (Le4.9), and so g" = g4', qed.

#As a corollary, we obtain a description of A%B

which could be used as an alternate characterication of

the §-tensor product of two §-rings (this won't work i
for S )e Observe tuet by (1.2.5), there is, for each

K-object A (I={-= 3 or 6, not S), 8 SeC+Se

(1.4.10) 0 —>A T—>~l‘i >7 —>0
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vhere p, €k | corresponds to L and i, is the
I‘g-morphjism whnich is tne .uni\rers’ul elgnent for 4.
I’\Tensoring sequence (l.4.10) with the analogous seguence
for another Ig-object B, we obtail} the following
(1.4.11) Theorem. Let X = 3 Ior 6; ®, &, and
)( denote the direct sum, tensor product, direct product
functors KXK —>X . Let A4AQD —’%;A@B be the
Iz(-morphi-sm associated to the bpilinear man AX B -—‘;;n’s.(%_-)B
which sends (a, b) .%o ,jA(a)/\,jB(b) , Wwhere ;,"AI and Jg
are the injections of tie summands (cf. QO.5.5)),'and'let
A®B —>AKB correspond to the eleuent -(id‘l, Oy Oy idB)
in K(A, A)XK(i, B) (B, A)xK(2, 3) . These X-morphisnms
yvield a short exact segusnce 0 —>ALA@E —>iQ3 —=>AXx8 —>0.
Remark: This thcorem can easily be generalised to
obtain a short exact ceguence of finxctors O0-—=>@—>rE—>X—>0,
in a sense which will not _be itade precise.
Proof: It will be convenientv to aborevicte 2 s.e.s.

0O —>X{' —>X —>» X —»0 as ZX; for two s.e.ss. X



end - ¥, X®I denotes the comzutative 9-gon with
short exact rows and columns

0 0 0

.

0 —=>X'®Y —X'RY —>L'®Y" —>0

Voo

0 —» XY —> AR Y —> L RY" —=>'0

e
! | |
0 —5X"@Y —>X"®Y —>X"®Y" —>0 ,°
| |
\j v v
0 Q 0

and a map from X to Y 1isg by definitvion three E-morphisnms
X' —2Y', X—>Y, X"—=Y" mnaking a coiuautative diagram
XY e L e XN
¥ v ¥
Y' _'_?'Y _;‘Y" .
2 the s.e.3s.

Now, given the K-objeects 4 a2nd 3, ILor

A' ¢+ 0 —>4 2oy g o ) ety ()

¥
- O
O
~1
ro
|5
v
o
v
O
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The triﬁles (0y pyy id) and- (o, pgy id) are maps
:&_--'—’:-_2_ y B=—>2 which g;’a.ve .rise to a map of 9-gons
A4®3 —»282, which is onto at each entry. Because of
the placenment of zeros in 282, it is easy to see that
the kernel of this epimorphism of 9-gons, whicih igc the
9-gon of kernels, has short exact ro?s and columns. How

the middle entry of A®2 is A®3 y and oy (l.3.4)

and its classically known analogue for K = 3, this

; e
3 4 ~”AEn s
middle entry is canoniczlly isomorphie v A0 B ; hence
the middle smtry of the kernel S9-zon, becirny the kornel of

~
T
i

the map p; @ pg: SO 5 —>7,07, ¥ 7,0 7, ¥ 7, , is,

~ ~
v T

by virtue of (l.2.5), just AOB. Concecuently the kernel

O-gon (having short exact rows 2nd columns) is

0 ) 0
J VAN
0 —> A8 B —2AB8 383 —> a4 —> 0
o A
0 —2ARB —» 4GB —> 41 — 0
d d b
0 5B =——» 3 —>0 —>0 ,
¥ ¢y
9 J 9



\.‘){;

and a atandard argument for 9fgona of this type clinches
the proof that the soguenca we want to be a s.e.s., is.
(1.4.12) Remarks: -l. Using (1.4.8), we can prove
that the {-tenaor product A%-B of two (-rings actually
coincides with their G -tensor prodﬁct A%B . For each
element of A%B being a subsoma of some element &a&b,
we may assume, given a sequence X1y Xp o of somas in
A%’*B, tbat- x; <a;0b; . But since A and B aze ¢-rings,
each Xy is a subsoma then of (\/ai) @(\/bi) s Whenee
their union exists in A%}B. Thus A?B is a G=-ring if
A and B are, and,'.the g=morphisms between two &§-rings
coinciding with the { - oPsnlan DOEREES Thsh, £4 TOLLGHS
easily that A%D B = A@SB .
.2. An argument similar to the proof of (1.4.11),
whose details we leave to the reader, establishes the following
fact, If (Bi)i £ g is a nonvoid collection of ¢ -rings,
then there is a short exact sequence (in which the empty sum,

if it occurs,is conventionally taken as the zero ring):

) s
0— @3B, — @38 — X O By —> 0 .
€I €T i€ JEI-14%
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L5 lgjectives:and ggésectives
The S-projectives of € and & are completely
described by (0.8.9). In like fashion, (0.8.8) assurcs
that the S-injectives coincide with the injectives.
Hothing is known, howevér, about tihe projectives, and a
description of the injectivec is lacking, too. (By way

of comparison, it is known (Halwmos [#/]) that the

3 coincide, or

ot

projectives and S-projectives in
equivalently, that ever epirorphisn is S-epimorphisn,

it

iz

and that a unitary boolearn ring is injective in

b

and only if it is coudlete; it follows easily that the
same is true in the catezory 3 .) In this section we
' present some necessary conditions for an object of 8
or 6‘ to be injective, and we exanine two consequences

of the asswaption that =2t leist one nontrivizal

b

C.1

[©]

(]

ci
-

<

(0]

exists.

Before embarking on this program, however, w

W
kj
H
(0]
n
(6]
o
o

an exaumple of an I§—projective not readily afferd

(¥
o]
o
O
3

—
O
L]
(00
.

AN
.
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(1.5.0) ' Example. ILet By ‘dcnota tiae C—ring of
Borel subsets or'tﬁe two-point eompactificutiog
Be (-—cn';uiﬁﬂwo} of the space 1R of real nu;:5ers. Let
A L5388 ve an S-epimorphism in § ; and let B s

be any 6-morphism. For each extended rationzl nuumber =r
(r € {-ojo@ui+ot), put

and pick an element Z, & A such that F, = £(E)) . Tet

r
B = /\ T, (r € t-cdv quso}) .
t>r,
tE€q o ‘
Then }_
AN E=AN NE = A 5. =58 ‘
t2r G s2t t2r ¥ s22» °
and

(r, s, t all extended rationdls), from which it follows that r
i ; ; ] 3 %
there is a unique (-—;norphlsm X: ]Brf; —» & suca that
8 = ¥([-o, r]) :

by 9 i ] i

and that this X satisfies f£+X = X (compare Gotz [/ , &2, 2.1).

Another proof cen ve given using tue Stone cpace techniques
of %1.7 by exhibiting B-fi as & retract of a Gantor spuce;

vie omit the detuils.
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B oeubi ki,

‘<

Aboreviating (Bg) = B, for cach Sorel set
I i ‘b
b € B , the fuct that B, 1is a retract of B
shows each :Bb is S-projective in € ; finally, since
the unification of a §-ring §—progective‘in 6 is a

c?—-ring S-projective in E;- and. (Bb_iftg)“ = Bb , We

see that each B, (b - 7) is S-projective, doth in

(1
~

6 and in © .

We next deécribe necessarf conditions for a &-ring
to be injective.

(1:5-1) Termwa. In either € or %‘ every injective
is an asbsolute retract, and every absoluts retract is
corplete. (In particular,.every absolute retract in 6 ,
end hence also every injective in ¢ , has a unit -- the
union of everything in eight -- and is thus 2 3—ming!)

A §-ring is injective (resp. an absolute retract) in
€ if and only if it is injective (resp. an absolute
retract) in & . Proof :

That every injective is zn absolute rctract is obvious.



4

To provs an zbsolute fetrgct is couplete, we need jhe
fact (ef. S korski'EQS} (55.1)35 that every boolean
ring has associated a complete booleaq ring and a
monomorpphiﬁm from the given ring to tie ;dmplete one
preserving all possible unions. In particular, there

is a monomorphism from an absolutz rztract to abcomplete

‘ring, hence each absolute retract is a retract of a

complete ring, and is therefore (cf. Halmos [/ ]) itself

coriplate.

o~

Next, let J be injective in ¢ and suppose that

a monomorphism f € 6(4, B) and = G-morphisa JE o6&, J)

are given. To obtain a G-worphism k& (3, J) suek

that kef = j, find a & -morphisn § Bt
N oA . I \A "’f',
k' & 6(B, J) such that, where j* I - 4
_ ' Al v .
. J*‘f h'{cl
G8rDesponds to J Dby adjointness, 2 > 8
2

k'sF = j*. Take Xk=Xk'.i
ig is as in (1.2.5)); then k.f = k'ednef = k'-;-i, = J*ei. = 3,

as required for J tTo be injective in & . The converse



Ll
-~

The converse is trivial because given O -morphisms  J
and f a5 above with J injec;ive'in 6, the S-morshism
k satisfying J = kef is alrezdy 2 3-—morphism. Iandeed,
k(1) = x(£(1)) = j(1) = 1, which is &Rl that need be zhown.
Finally, let J be an absolute retract in ¢ y &and
1ét £ & s, A)I be a mcnﬁmorﬁhism. Let a = £(1),

Pyt & —> &La the canonical projection. Then p_-f GZ 3 (7, &)

~

and - «f is @ nonororphism. Hence Trere is a € -morphisn
a B e

h: 4, —> J such that hep

a = Dep

’-ﬁ
1
}_:
u
(=1
{ )
)
ct
ct
ks
C3
o]

A

we then have ge+f = hep_+f = idJ s Wiich shows J 1is an
absolute retract in § . The converse is ajain a triviality,

and the lemnrz iz

3
H
(8]
<
3
[N
-

Remark: Irn view of this lemua, it aztters little if
ne work in the category € or G y exanini.g our injectives.
The next lemma depends upon the fact that there is at
least one 6 -ring X with no & -morphism to 22 . Such

rings are afforded in profusion by the theory of mezsuradle

cardinzls (cf. [7 s Chaz./2])) . Precisely, lel X bLe an




')

uncountable set whose cardinality precedes the first cardinal
’ )
inaccessible from &10 (for definitions and properties of such

cardinals, ¢f. Ulam [3/, §§1,8,9], Sikorski (25, §26], and

/

[7, Chap. 127]), and let K = E}Vr , Where r is the

equivalence relation "differs by at most countably many

points from;"™ there are infinitely many such X, and none

of them has a E‘—morphism to Lo~ Remark, before passing

to the next lemma, that for a j&-ring the notions g‘-morphism

to 22 and non zero (-morphism to /, are equivalent.
(1.5.2) Lemma. There is no %-—morphisr.ﬁ from an

injective to 22 (equivalently, no non zero 6 -morphism).
Proof: If J 4is injective and a € ?s‘(J, 22), let

22 —>J and 22 —> K be the unique E-morphisms, and

let b: K =—=>J be a c?-morphism, available since J dis
I, ———=17
injective, making the diagram ., ~5  commute. Then
—K

asb is a G6-morphism:from K to 22 s Which is impossible.
. £
(1.5.3) Corollary (Halmos Eﬂ,’ y, Prob. 33). No injective

¢ =ring has an atom. ZProof:



JN S

-To have an atom is to be u direct product a4 "22 ’

s

which inplies to have a canonical projection to Z2 , Wniech
is incoripatible with the assuaption of iujectivity.

(1.5.4) Corollary. There is no non zero g-morphisz:

from an injective to the §-ring 21{' « Proof:

if a: J —> 2:‘{ is a ‘§-morphism, then whenever

g E G(EX, 22), the conmposite g.a is zero, oy (1.5.2).

For each point x in X, define 4 & 6’(2}’:,'22) by

1, x€ 8
B 0, xg&s

and .observe that pﬁ’}:(S) =0 for all x€ X iff S =g.
From gea = 0 for all & & 6 (2%, /») we ovtain
g.(a(3)) = 0 for =1l x € X ond all § € 7, whence
a(g) =g for all j& 7, ﬁhici: shows a = 0.

(1.5.5) Corollary. If J is a non zero injective,
J 1is uncountable. ZIroof:

If J is fiaibe, it adnits o monomorphism to 2%
with X = S(J, Z}l) i for thic map to oe zero, J must be

zero, which contradicts the hypothesis. So J 1is infinite;




Uy

but an infinite & ~-ring is uncopntabie [25, §20 E)jl
(1.5.6) Corollary. Every O-morphism from an injéctive
to an S-projective is zero. Proof: - /
Sikor;ki's construction [25, (31f2)] shows that_each
free t%-ring is a 5-field of sets; qach free ¢§-ring is
therefore also a ¢&-field of sets, and an S-projective,
being a retract of a free, therefore ﬁas a'monomorphism to

2x

for soﬁe X . Composing this witly any G6-morphisnm
from an injective gives zero, by (l.5.4), which ends the proof.
(1.5.7). Corollary. No non zero injective can be an
S-projective, either in 4§ or in 5 , let alone be an
absolute retract or a projective. Proof: Immediate.
Now assume there is a non trivial injective either
in 6 or in 3;. an application of (l.5.1), if necessary,
assures there is then a non trivial injective, say J, in
5. It is easily seen that the four element boolean ring
G = }0, pt., 1A Dpt., 1y is a free 5-ring generated by a

single point. Let a soma a in a %-ring A Dbe called

non trivial if O ¥ a # 1 (so only 0O, 1 are trivial); then




i L?.f o

a2 1is non trivial if and only if the ?-morphism

~
L1

a: G —>A correépondina by zdjointness to tie inclusion

]_a} C A 4is a monomorphism. Iet h: G —>J De any

-

-

G -morphism, and let g,: &4 —>J be a 6 -morphism

‘(available since J is injective) making the disgran

G --—---—>:Ei A
A
J :

commute (o non trivial soma in A4 ). The fanily
defines a ¢ -morpnism

(6a)a non trivial in A

g: &4 —> X Ja;'—*u (each J, is J)

which we shall show, under the acsunption that 0 # A # 22 "

is a monomorzhism. Indeed, the identity g.(a) = a

assures that any sora & for which z(a) = 0 nust be
trivial, and (1) = 1 <chows that this frivial soma a

cannot be 1; o a =0, and g is & Lowomorphism.
Since J" is eusily zeen to be injective when OFA# 22 "
we see that each zuch &4 oaduits & monomorprism (in &)

to an injective. The suze is triviadlytrue for O azd Z,,, .
[




Finally, if B is a §-ring,
.element iB: B -—b-ﬁ

8 to an injectiive yields a

injective; so, saying =2

each object admits a monomorp

thus proved:

(1.5.8) L

I «
trivial injedtive, then ?oth

(1.5.9) Corollary.
then the functors
nmonomorphisms. FProof:
Suppose f: A' —> A

vy
-t

p
Z: AA® B —>J be a moaom

vith a monuiiorghism {in
ponvaorshizm froum

category has enou 10U

If eitner

<
®3: § —>

is 'a ronomorzhism.

nism to an inj

-

thg-co;pusite of thc universal
G) from
B .to an

gctives if

dmctie
A‘du

to an injective, wec hauve

€ or © nus

e non

¢ and & have enovgh injectives.

If there is = non trivial injective,

6 and @®B: § —> & yreserve
[+

et

ve (posalble

by (1.5.8)) COI‘TGSDOEdluD to a pair of meps xNA —>J,
y: Be=2»J. Find a 6-morphisn x: A —>J such thut

¥ § - - -
xef = x, and let 2: A®B —> J Dbe the map corrssponding
to the pair x, y3; then coneider the diagram overleaf, wherec
the meps * and ** are defined in (l.4.11).




BB > 163

roa‘[l fés[ Eaat
A@B —-———>“@3 /

J

The triangle comuutes by tae definition of 2. The

square com:iutes by the co.ment preceding the proof of

G
(1e4.11). Since 3z' is & monomorphicm, 30 is f@3;

since 2' and *

re mononorphismsy so is f&B.

(How nmuch easier this wzs thon the relevant portion of

the proof of (l.4.6)')

The last result of this se¢

(1.5.10) Theorem. If thex

injective, then the projectives
coincide. Froof:
Let us work in tio: crotegory
& -morphism f: A —> 3 which ig
so that there is an elenment bo
£ (letes Tla) 4 b, for all so

£

[}

ja/a € 4, f(a)ﬁ;bo or

4
"

ction asserss

o]
i
ck
o
1]
||u
I'Li
H
(9]
<.
[$]
(¢]
ct
}_l
<
(]
o

~

G . 4ssume Zgiven a
t an S-epimorphism,

& B not covered by.

nas a in A&). Let

£(a)< 1A v, Ly A

{b/b B, b< \/ £(a,), aiE;{},




A

Z=3a/ag A, a{.\/al, ay €Xf‘

Y and 2 are G—ideals in the rings B and A,
respectively; if a & Z, then f£(a) € ¥ (indeed,
| @ @
a € 2 ==!->ag_\/lai (aiE %) =>-f(a_),<__\/l‘f(ai) (ai€ )3
1= ’ i=
and if f(a) € Y, then a € 2 (indeed, f£(a) 65 Y =—>
vl [
£f(a) ¢ Vlf(ai) (a; € X) =>£(a) = \/lf(a’/\a ) =>
is= : =

@ A ﬁ'\'}lca/\ain 0< b, = (a A \/ (A3 )) E X 4
i=

but where aa =a A \/ (a/\&i) and a; = &/\8-1 iz l)',
i=l

¥ o
we have a* € X (1>20) and a =a* A Va*< Va*,
B 0 i=1 1 T i=p %

so & & Z). Conseauently, if p: & —>A4/Z and

q: B —>38/Y are tihe cununicul projections, there is a

% . def . /o def
unique g -morohism f£.: A. A/%4 —=>B/Y == B, ncking
e e —-—
ﬂ T ‘;-)
the diagranm ¥ if* coxz:ute, and i‘l ic a
Al —_— 3.

moromnorphisn.

Next, let by = q(d) - B, , and let ay - A, satisly



) =Y

a; €% (i>2), such that £(a) < b, Vb ; we may further
- - | S— % 1 a Ayww -
assume that i‘(ai) S B, = 1A%, (i22), zince any a4
with r(ai){._ b, is unnecessary in b. Forming a'.=
®
= 2 - a ve have
.1'_\=/2 K
® ® :
f(a') = £(a - V ay) = fla A V (aAzy) =
. a= ™ i
w *
= f(a) A\ _\/Eﬂa-)/\i(ai) = f(a) - V. f(a)) <
i= )
©
< (b, \/b) - V £(a;) <o
j=2 -
Thus a' € Z, and p{a')= 0. On tae other hand,

a; €X (122) =>pay) =0 (122) = p(2') = pla),

for both are ecual to p(a) - \/ p(a.) . Consequently,

o
—

= p(a) = p(a') = C, vwhich contradidts the hypothesis.

“An ergument contrzdicting fy(a;) €1 /\ b; is similar.
-l e

i N . - - -

Thus we have a monomorphism fy €--G("‘l‘ Bl) and

an element b, of 3B, for wrich

hmn o

-— we say bl is indenerdent from Ay .
ks -l
. . ~ . .
Finally, let € bz the four elenent -g-riry that is

thz free @ -ring on iz cingle generator, and let




>

§: G —>3By, g':t G —>B, be the &-morphisms that
correspond to the inclusions fbl} C By
il VA blg g B, . According to Sicorski [25, (38.2)],

the independence of 51— from a4, guaarantees that the

A : A

)

| G §
6 -morphisms h: G @A, —> B, and h': GOA
corresponding to the pairs of naps C@, fl) and . (g', fl),

respectively, are monomorphisms. Find a mononorryhisn

A

from G @Al to an ingective J (posgidle by (1.5.8)),

and find maps k and ' froz. 3y to J making both

comuutative diagrams. Since. A\ol) = k‘(lzﬁ_bl) = ltcxk'(bl) ;
k # k' unless 3B = {O} y Wiica. is trivielly ingossible;

then siuce g is an epiworpnism, kegq # k'eg; et
cornmutztivity of the diu_ ram overlesf clearly indicates

T f is not an epimorphism, in

28

\C
H
’._ m
B
c
0
|.

that keq-f =

other words, every epi.orphisa in ¢ is onto. 4n apnlication

~

of (0.5.8) coxpletes the proof, in tie catejory ¢ .
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Pass to the category ¥ . Let £ & 6(a, B) Dde

. -~ -~ -~ ~
an epinorphism. Then the wnificztion £ € o(4, 2)

~
£
L

is an epimorpkism in ¢ (indeed, g-
==> gof = hef => ¢ = n), hence onto, hence f 1is onto,

andanother application of (0.8.3) completes the proof

of the theorem, and closss tae gcctlon.

nt (g 2 € &8, )



l.6 Step fucctions

Thiz section is devoted to the construction of the
group of step functions over a boolean ring,”ith values,
or coefficients, in an abelian group. The proccdure will

be to obtain a step funétion functor #: AG?‘Q —> 48 as

ta
c“l‘
d‘
i—J
o
e
~
H
@
O
|._|
_l
—~
C
L
\N
}...l
s
~s
Hy
O
H
o

the left functorial represcxm
certain functor IMixz: (AGX3B)* RiLf —>=8. & remark of

Freyd [5 ] will help show thnt there is & unique "extension"

of the step function functor to a fuictor ,lixX3 —>, 17
i AW ks ™

(wvhere X% is a comuutetive ring witn unit and ,i is the
category of k-modules), such that the dicgram of functors
%3 >
(1.5.0) \Lq | x 1dy 1
: \%
> LM

(where | | denotes tihe underlyins group functor) commutes
(at lezst to within netural eguivalence); this in turn
has an extension to & fumector ,ax3 —>,4. e begin
with the description of the furector MNix, end an

: - K { 3
ated functor mix: B*x . G —> 3.

(1.6.1) Tet I, ' & 42, 3 & B. 4 function

(B, ')

[
=
¥y
|
—
i_
®
Hh
+*
(M
uis

L. (a\/b) = £.(a) + L.(5) —_f,.,(a/\b) ;
Defins nix{3, 11') +to de the zunset of Z(B, ') that

concistz entirely of mizted functions. Next, for ezach



function f£: LAB —»u' (i.e., £ € 3(xx2, ¥')),
dofine £° € $(i, ') (b€ B) and £_ € 5(B, k')
(m € M) by ths formulas ¥

%) = £(a, ») | (n€ %) ,
£_(b) = £(u, ) ®E3) .

Finally, Hix(if, B; M') 4is by definition the subsct of

S(lix B, k') consisting of all those functions £ (cualled

once agzin mixed) for which beth

b r e I . . - r )
£° € ac(u, u end - f_ € mixz(B, ')

for all b € B and 211 = € .

" VAl *Y - 3 2
4{ € ‘2_:“';(‘.‘0‘ e ) 3 o E ._:j{ ')O s j/ 5
i - . - Zag iRy N o
?.- t -'f-__:_g'{-.a" A-;é) Y f_* t:_ u..l_'-r.i._.i, l'--l) ]
f € Mix(ll, B; '),
r e
then 2zef,.y € mix(B_, M') , (z-f-(xy¥y)_ 2L .. 7
o Ty x(m,
- A o e 'd . o (=r - NN iyl - we
for m, & M, , so thev (z-f-(x,y) 2, © aix(B_, 1) ,
‘\-D _(u-'r \I 3 s
and (z+fe(x,y)) 0 = z.5v (bo’-;: s, S0 that also

(zfe(x,yn"° € ig_tG(I-.ic, hid ), for B & B, . Consequently,

g

we have proved and ==y state

(1.6.2) Lenna. Both wmix and Mix are functors,

G and (A8 xB)*x.iZ , respectively, to S.

from 3B*x.

Wwe nov rsduce ths probler of findinzy a left functoriz



representation for

IIix to that of 'findinz one for

nix.

Indeed, if mix: B*X AG m— 5 has a left functorial

representation F: B —> 4G,

equivalence

so that there is a natural

mix(B, ') = AG(F(B), E'),

the fact that gg

is zutononmous indicates that this

equivalence can be lifted to an eqguivalence of fuancters

to AG (and in particular,

a functor to

(cg. (0.5.13) and §1.3;

A% ). Since

if we think of mix as

Mix(li, B; ') &=
(s
o
which proves
(1.6.3) Learwa. If

E
Q
ct
<

H
p
I—J
H
D
t.:-’
rr)
¥

I.._I
O
]

tensor sroducts in AT are

11568 b0 AG,

that mix mnay be viewed as

" AG has temsor products

® ),

7e haove

AGGI, mix(B, .'\‘r\mlx(B, AG(r, X'))
46, 43(R(3), i )NVL5(2(3), 46(, HY)
‘LG‘(J.LJ. ®FKB ) .{l ) [

the. funector mix has z left

- o - e T e we
2 bilsn The funmetvor Hix

sentation #: LG XB —> iG

exietence of & left

vix , 1¥ suffices. to do

nix , and for this, by (0.56.1), it is enouzh

pix{B, _) hes a left reure-




[

(1.6.4) Lemma. Let B be a boolean ring and let
G: 4G —> S Dbe the furctor mix(B, =) . This fuictor G
has a left representation.

Proof: Form thelfree abelian group &4G(B) pgenerated

by the underlying set of B, so that
S(B, 1') = iG6(aG(B), H').

Let g be the ecuivalence rslation on AG(3) generated

by the relations
' @V + (aAB) § (@) + ) (2, b€ 2)

where + is the addition in AG(2) and (x) is the
element in AG(B) corressondins to the 2lenent x EZ 3.
Define F3B = AG(B)/Y , thz guotient in 4G5 of A4G(3)
by Y . Observe thaot whan f & 2(B, ') corresponds to
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i : 0 T oo, T
GQM') = nmix(3, L') = 4i% ““('30/? '),
Aa(B)/f represents G, and tre lerme is proved.

Ag remarked above, xn immedsate consesguence of

I'._T.

(1.6.%), (1.6.4), and (0.5.1)

-
(=]

(1.6.5) [Theoremn.- There iz a functor #:i AGR 3 —
which is a left functorial representation for ths fuactor

Mixs (AGX B)*XAGF —>

st
.

e

IL.
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(1.56.6) Tormulaec. Let Ly & 2%y 3y € 2. Then

i1a (1.-:1@ ) # By =% 1, @ (L, #B)
20 g (Blg 3,) =
e ZgéBl = F(Bl) (notation of (1;6.3))
; o Lo "
oq'. Iul }’# 22 —— ..n;l
5. My # 3 s iy ® (Z#3B )
161 ZQKB @ )z‘._-.( J'" 1)@(2
8 Q\ilx 1:‘:,) =B Q = G"l l) x G.z 2 3,‘ X (.., - 31) x (i, ;j*i 3)

(12 # 8D # 2,

=

Proof: The first formula follows frormitane ubcervation

that there is a netursl 1-1 correspondence detucen the

AG-morphisms from either side a..4 the
direct product L, xi,x3B yhiech are AG-sorraisms in esch

= 1 2 1 &
of the first tvo verizbles and mixed iz tvie last The second

e

B e o I o TR W (- %, = - S o2 ma
formula follows froo siniler soasideratioans. The third ons

follows frow the raot thnt seading £ € Mix{/, By B') to
0

o o g i S, N ST, s o) A . Moy = e 1 o b
£ & Mix( Z, By; 30Y  adeh is defined by flm, b)) = m«£(b)
establishes a natural ¢ uivalence betviecn the functors

nix and, Hix(/,=; =) . The vroof of four is sinilar to

! ] T ' g ) - l -— - e -
A s AG —2 AG ond HF: B —> A% s:z2d4 231it emaet gsrusnosas
) —— — = = P a
o S de - = - e ] o k| 1 "
to solit cxact socuences, 2nd tl:ot's provaed like (l.4.4).
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- Attention should 153 called to the formal similarity ol
betwaen this steﬁ function functor and the group xring
functor of elementary aigebra, on the one hand, and
between it and tensor product functors on the other.

We suggest also that it is quite likely that the functor #
is characterised by formulac «l., 2., o4., and .7. of
(1.6.6), and that each of the functors #3B: AG —> AG

and M#: .Z§ —> AG preserves all oxact sequences. Some

of the forthcoming results will tend to su:pport these
comments.

In the meantime, observe that a ring k with a unit
eloment can be interpreted as a category Xk having only
one object * with k(x, *) = k =-- that is, the maps of
the category k are the elements of k, and the rule of
composition is the multiplication table of k.

A category A 1is additive if there is a functor
| h: A*x A —> AG such that [h(4, B)| = A(A, B) and such
that the composition rules are bilinear when lifted to
AG. The prime examples, a priori, of additive categories,
are the category AG itself and the category k associated
as above to a ring k with unit element. A functor F
from one additive category to another is called additive
1L *or each pair of objects A, B in the domain category,
the function F,p 1s in fact a group homomorphism from
h(4, B) to h(F(a), F(B)).

Freyd (5 , p. 16] points out that the category W of



left Xk-modules can then be identified with the category
(k, 46), of all additive functors from the category
k (@ssociated to the ring k) to AG; indeed, such a
functor consists of an object M in AG (the image of
the single object * of k) and a group homomorphism
k —>AG(M, M) , which is exactly how & left k-module
is defined.
Having a functor #: AGX B —> AG, as we do, we

can easily produce a functor, still. denoted as #,
(k, 46D, xB —>(k, 46), :

namely, to the addifive functor T and the boolean ring
B assign the additive functor T#3B which assigns to
the object = of k the abelian group T(s)#B and to
the map a & k(*, *) = k the map

T(a)#idB : T(*)#B —>T(»)#B.

This functor T#3B is easily seen to be additive, and
so we are through describing the action of # on objects.
The description of the behavior of # on maps is this:
given a map in (k, AG), , i.e., & natural transformation
g from an additive functor S +to another T, and given
a map in B, say £ & B(B,B'), define g#L:S#B —> T#B"
to be the natural transformation which assigns to the object
» the map g(s)#f: S(#)#B —>T(+)#B'.

Reinterpreting (k, 4G), as M, we have thus
obtained a functor #: MXB —> M from whpse very



v
—

definition it is clear that the diagram (1.6.0) commutes

- (at least within natural eqﬁivalence). An equivalent way
of getting to the same result is this: & k-module
consists of a group M and a group homomorphism m:
k =—> AG(M, M) which converts ring multiplication to
coﬁpositzion of mapsj; this group homombrphism can be
reinterpreted as a group homomorphism k®M —> K
satisfying certain conditions, amounting to the multiplication
composition condition Jjust mentioned. Form the composite

m#id.B
k®(M#B) = (k®PM)#B ————> N#B; °

it too will satisfy the conditions that assure that a

k=module structure on M#B is at hand.

Formulae similar to those in (1.6.6) can now easily
be established. Moreover, #: _khélxg __B"k?-éi is again a
left functorial representation. For convenience, assume
that k 4is commutative, and let @ denote the tensor product
in the autonomous category M. €
(1.6.7) Theorem. Define Mixk: ( kl;&x B )* x klgﬂ g ot -
as follows: Mixk(m, B; M') consists of those functions

£ & S(MxB,M') for vwhich, in the notation of (1.6.1),
£ € mix(B, ') and  £°€ M(M,N')

for all m & M, b & B. Then there are natural equivalences
mix(B, M') =  M(k#B, ') and Mix, (M,B;M) =  M(M#B, ),




where mix 4is thought of as a functor from B*x M to S,

~and we have formulae (meaning canonical jJi-isomorphisms):

5 (Ml‘iua).# Bl.;\; Mlﬁ(mz# B,)

e M #LEE) = QL #B#3,

3. k#B) = k®#B,)

e My # 7, = My

5. M, #B, = M]_@;c (k# B,)

6. ki (3,8 B,) & (k#B))® (k#B,)

o7+ (U)XM,)#(ByXB,) = (M#B,) <(M,#Bo) x (M,#B,) X (M#B, )

Proof: The natural equivalences are induced by those
02 (1.6.4) and (1.6.5). As for the formulae, .l., «2.,
and .4. are proved just like their counterparts in (1.6.6);
«3. is an application of (l.6.6 .l.); .5. follows from .l.;
.6. follows from .2. and .5.; and .7. is proved like (l.4.4).

In order to extend these results to k-algebras, we
need the following

(1.6.8) Lemma. If M is a commutative k-algedbra,
then M#B inherits & commutative k-algebra structure.

Proof: To say M is a commutative k-algebra is to

assert the presence of a k}_&-morphism m: M@M —> M
- k

satisfying certain conditions. These conditions are then
satisfied also by the ,M-morphism n': @#B)di (M;’,{B) —>= (L#B)
defined to be the composite

Pr—




(M# B)f(m#s) 5—-) ((m#z)gu)#n —p
LY (MG u# 5))#B I (x W#B#D —>
i (@) # (36 3) BEA . uy3B,

where /\: B%B —>B 1is the multiplication -- 'i.e.,

intersection -- in the boolean ring B, and all the
jsomorphisms but the second, which is tw# idgy are

" provided by (1.6.7).

In terms of the following definition, we shall .see
that # induces a functor ké'x g3 oty k‘é which, again,
is a left functorial representation.

(1.6.9) Definition. ILet M and M' be commutative

rings. A function f: M —> M' is called

multiplicative if: f(ab) = £(a)f(v) ,
squaremultiplicative: (£(ab)° = £(a)f(d) ,

circular if: f(a+b=-ab) = £(a) +£(b) - £(adt(d) .

With these appelations, define functors mnul, sqm, cir
from g'xkg. to S Dby assigning to the pair B, M'
the set of multiplicative, squaremultiplicative, or

circular functions in S(B, M').

(1.6.10) Lemma. A function f from a boolean ring
B to a commutative ring M' 1is mixed, multiplicative, and
circular if it is any two of these things. If the ring NX?

is also boolean, then the mixed multiplicative functions,




the mixed sqnaremnltiplicative_runcfions, and the boolean
homomorphisms all coincide. The functor cirmul: g* X A —>8
which assigns to the pair B, M' the set of functions
in $5(B, M') that are at once circular and multiplicative
(and hence mixed) has k#: B -—->k§ as a left functorial
representation, and has as right functorial iepresentation
the functor I: ké-—ﬁ;»g which assigns to the k-algebra
M the set of its idempotent elements, made a boolean ring
" by using circle composition (Jacobson [/5, p. 81 ) as
union and multiplication as intersection. Proof:

| The first two assertions follow from straightforward

manipulation of the definitions. That k#B (which is

ae

in A by (1.6.8)) represents the functor cirmul(B, -)
ké —> S follows from the fact that the equivalence of
(1.6.7) between mix(B, -=) and kf,_;(k# B, =) induces
a correspondence between multiplicative functions in
each mix(B, M') and ,A-morphisms in kg(k# B, M').
An application of (0.6.1) now shows that passage from
B to k#B 1is a functor from B to ,A and is a left
functorial representation for cirmul. That I is

a functor at all is dué to the fact that ring homomorphisms
must send idempotents .to idempotents; now any function

from a boolean ring to a ring which is multiplicative

also sends idempotents to idempotents, and thelcircularity
requirement is equivalent to the sta".:emanf taat the function
sends union in the domain boolean ring to circle composition

in the range ring, which is just union in the boolean ring
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of idempotents. This completes the proof.

Remark: This lemma shows that the functor

k#: B—> A is left adjoint to the "badean algebra of
i_.dempotenta“ functor 1I: kﬁ‘ -—> B. We have already seen
another pair of adjoint functors of this nature; namely
the inclusion functor B—>,A (k=/or Z5) of (l.2.4)
also has, by (0.7.7), a left adjoint, which passes, as an
examination of the proof of (0.7.7) reveals, from the
commutative ring or Zz-alsebra (as .‘t:he case majr be) to
its quotient by the equivalence relation f generated
by the relations 32 ga « These two adjoint pairs should
not be confused, nor is a functor from one pair adjoint,

on either side, to a functor from the other.
(1.6.11) 'theorem. Defining a functor
Mixmulk: (k}.:L XB)* X ké —> 8

by the requirement that Mimuik(m, B; M') be the subset
of S(MxB, M') consisting of those functions f for

which, in the notation of (1l.6.1),
£ € A, 1) and £, € mix(B, W) squ(B,H")

for all b E B and m & M, the natural equivalence of

(1.6.7) induces a natural equivalence between
Mixmul (M, B; X')  and  LAQM#B, '),

and so # 1is a functor | AXB —> ;4 which is a left -
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functorial representation for Mixmu;k, and is compatible
with the earlier versions of the step function functor.
The formulae of (1.6.7) are all valid in this situation,
too. Moreover, the functo:és @ and # when restricted
to BXB, are naturally equivaelent.

Proof: Under the equivalence Mbck(m,ﬁ;m‘) - k}g(M#B, ) |
of (1.6.7), the subset Mixmul, (M, B; N') of the left
side is put in l-1 correspdndenca with the subset
kg(m# Bﬁ, M*') of the right, which proves the first
assertion. The verification of the formulae proceeds
as ;arlier. Finally, if B and B' are two boolean rings,
these formulae afford a sequence of canonical isomorphisms

B@za' = Bg(ZE#B') = (B%Zz)#B" = B#B',

which takes care of the last assertion and completes the proof.

(1.6.12) Remark. Two formulae hold in the case of
k-algebras that it is meaningless to write in the other

cases == these deal with unifications and assert

Lol

M#B 2 (u#B)" € L)

M#B = (M#B):\ (B E 1;3) "

The proofs consist in straightforward comparison of the
unitary morphisms from each side with mixed maps that

preserve unit element, and will be omitted.

One of the well known properties of tensor Iprod.ucts

of vector spaces, traditionally used in linear disjointness
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arguments in algebraic geémetry, is that each element of

. the tensor product V@V of two vector spaces over the

field Xk has an expre];sion as % vy 8w, with the

v's linearlly independent and th:'.lw 's linearly independent,

where v@w is the image in V@W of the pair (v, w)

in VXW under the universal bilg.ineaf map VX W —> V.®W.

This property has an analogue in step functions, which «

we now describe. | |
ILetting M be a.group and B .a boolean ring', we

too have a universal element MXB —> M#B, and we may

designate the image of the pair (m, b) as m#db. It

is sufficiently clear, at any rate, that every element 'of

M#B has some expression as é mi#bi, since M#B

can be represented as g quotiezzi:lor the free group

AG(M xB) generated by MXB., More is true, however.
(1.6.13) Theorem. If O # f & M#B, then £

has a unique expression
%
£ = m., #D.,
el *0 4

witﬁ the b 's non zero and pairwise disjoint and the
m 's distinct and non zero.

A proof can be based inductively on the length n of
the shortest possible expression for f as a sum % mi#bi ’
expressing f' = f - mn# b, in the optimal form =t
deccribed bsr the theorem and computing f£' + mn# b=
from it. We shall not give the details, since we don't

need this theorem, despite the fact that it has many useful



applications, some of which we .i‘nd.‘u_.éate here. The

_ expression described in the theorem will be called the
canonical expression as a sum of elementary step functions,
an elementary step function being one of the elements n#bd

described in the prologue to the theorem.

Suppose that M 4is a topological group, and that
B 1is a boolean ring. For each open neighborhood N of
zero in M, define a subset UN of M#B to consist
of all elements f of M#B having, in their canonical
expression as a sum of elementary step functions f = E m, # Dy
all the m 'S in N. This family of subsets UN =t
is readily seen to form a base for the neighborhoods of

zero in M#B making M#B a topological group.

If X is a normed linear space, with norm |} | ,
a norn can be defined in M# 3B by the formula ¢

ALl = max fimg i

-

-

n

where ) mi#bi is the canonical expression for f as
i=1

a sun of elementary step functions. Incidentally, the norm

topology defined on M#B is the same as the topolgy

described above induced by the norm topology on M.

Theorem (l.6.13) can also be used to prove that both
M# : B —> AG and #B: AG —>» AG preserve short exact
sequences, for it affords an explicit description of the
kernels. We shall need none of these remarks, although

special cases of each of them will be established in other ways.
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1.7 The Borel functor

A boolean ring (resp. G-fing) which admits a
monomorphism (resp. G-monomorphism) to the boolean
ring Ex of all subsets of a set X is called a
field (resp. §-field) of sets. M. H. Stone has
proved (in [27] and [25]) that every boolean ring
is a field of sets. Precisely, the boolean ring
Z2 is an injective cogenerator (cf. (0.8.5) and the
definition preceding (0.8.8)) in g' ngd hgs a
ID-structure, where ID is the category of compact
totally disconnected Hausdorff spaces and continuous
maps. That is, there is a contravariant functor
S: B —> TD such that 3(4, Z5) = 18(4)1 . Moreover,
the two point discrete space [/, , which is injective
in TD by the definition of total disconnectedness,
is also a cogenerator and has a E—structure, meaning
there is & functor R: TD ——9—@ such that |R(X)] =
= TD(X, 22) (== clopen subsets of X) . Finally,

S and R establish an equivalence between (ID)*

B

a g. Since S(Zg) is a one point space, the category
|

itd>

, which is on the one hand equivalent te B (by

(1.2.5 .2.)) , is equivalent, on the otner, to the
category dual to the category of maps of a point to

a totally disconnected compact Hausdorff space, i.e.,
of compact totally disconnected Hausdorff spaces with

base point, and continuous base point preserving maps,
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call it ID, . It follows that the boolean ring 22 "
. @&s an object of B, has a TD,-structure, say- S,,
and the two point space /, with base point O has
a Be-structure R, , which, together with S, y sets
up an equivalence between B and the dual of TD,.
1t BE B, we write S(B) = S,(B) - [base ﬁoint};
then |S(B)| ={epimorphisms from B to 22}, and if B
is unitary, no confusion arises. S(B) is called the

Stone space of B, and S,(B), the .pointed Stone space.

.

It is not the case thét every o6-ring is a o¢=-field
of sets. Indeed, an argument like that proving (l.5.4)
shows that none of the (-rings K = 2}{/5’ defined
just bvefore (l.5.2) can be a §-field of sets. Sikorski
[257 (24.1)7] gives necessary and sufficient conditions
for a G-ring to be a ¢-field of sets. Loomis QRe ]
shows, however, that every ¢-ring is, like these K,
a quotient of a §-field of sets by a &=ideal, and that
the Stone representation is noﬁ far off. DNamely, given
a 6-ring A, let I(4) Dbe the first category (i.e;,

meager) subsets of S(A); then the composite
— §compact openy __ »S(A) S S(A%
A isets in S(A)} >2 2 (2)

where the first map is the Stone isomorphism, the second
is the inclusion, and the third is the canonical projection
to the quotient, is a S-morphism, which, if' A 1is a

§-ring, is in fact a ?S‘-morphism.
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 In order adequately to make use of the Stone space
-theory, ﬁe need the notion of fha quotient of a category
by an equivalence relation. So let 'ﬁ be an arbitrary
category, and assume that there is given, for each pair
A, B of objects in A, an equivalence relation ?AB
on the set é(A, B) , in such a way that whenever

£, € A(A, B) and g, € 4(B, C) (1=1, 2), the
implication

5 S)Ju.re, 24 8 KBc 8y = g1°1) gsc. 8°%5

(

is valid. Such a class \ of equivalence relations gAB

is admissible, or an admissible equivalence relation on 4.
If g is an admissible equivalence relation on 4, there .
can then be formed the category é,/f , the quotient of

A by § s which has the same objects as A, but the maps

are given by equivalence classes of maps of A4:
é/i)(Av; B) = Q(Ao B)/YAB ’

and the composition of two é”/f -marphisms iz, by
definition, the equivalence class of the composition, in
A, of any two representatives. The admissibility of }o
guarantees not only that this definition is unambiguous
but that it makes é/’f a category. Assigning to each
A-morphism £ its equivalence class defines a functor,
the canonical projection,'from A to .é/T’. This

construction will be used in the following discussion.




A Borel structure on a set X 1s by definition a
pair (B, N) oonsistling of a -&—Iield B of subsets of X
(meaning the inclusion B —> X s a G=-morphism) and
a s-ideal N of B. If (X, B, N;) (=1, 2) are
sets with Borel structures, a function f: X, —> X, is
measurable if both |

f—l(a) -~ B, whenever a & B,
and .
=) € N, whenever a & N, .

Thus the measurable function £ induces a &= morphism,
say B(f), from B,/N, to B,/N; by taking complete
inverse images and dividing out Nl . ZLetting DBorel Dbe
the category of sets with a Borel structure and measurable
functions between them, sending (X, B, N) to the 5-ring
B/N and £ to IB(f) defines a contravariant functor

B: Borel —7\'3‘. Call two measurable functions measurably

equivalent if they yield the same 5 - morphism after Epplying
B; since B is a functor, measurable equivalence tprns

out to be an admissible equivalence relation, and we may

form the quotient category Borel of Borel Dby this

equivalence relation. Observe that 1B induces & unique

contravariant functor Io: Borel — & compatible with the

canonical projection Borel —> Borel , and that E is an
immersion, by virtue of the definition of measurable equivalence.

We call 1B (or IB) the Borel functor.




. Observe that Borel has all direct products.
Indeed, if i = (X, B_, N (s € S) is a family
of object in Borel, form the direct product

X = ;X: Xs )
s E S |

let Pyt X'——E»XS be fhe canonical projections, and let
(By N) be the smallest Borel structure on X making each
p, measurable. Precisely, B is the 5-field of subsets
of X generated by all p_ ~'(v ) (b, €E3,, s€ s,
and N is the ¢-ideal of B generated by all Ps_l(ns)
(ns € N, s € 8) . It is easy to verify that a function
g: ¥ —> X, where Y has a Borel structure (M, A), is
measﬁrable iff each P8 is measurable, which is enough to
show that the projections p_, make (X, B, N) the direct

product of the (Xs, B, s NS) 's .« Since the canonical

projection Borel —> Sorcl preserves direct products,

Eégéz also_has all direct products. The question arises
whether the functors B and B behave well with respect

to direct products. The answer is that they have a strong
tendency to convert direct products to direct. sums in the
category 5 s but do not always.succeed in doing so. Sikorski
[+5°y §38 A) (p. 137)] gives an exampée of two objects

(X, B, 0), (Y, A, 0), for which A@B # X (Y,A,0)x (X,B,0)).
The tendency is realized sufficiently often for our purposes,
however, as we are about to see. (The corresponding problenm
for direct sums in Borel has an easier and more satisfying

solution which is unfortunately not needed here.)




Returning to the Stone spaces, let A be a r?-ring 3
and let B(A) be the G-field of subsets of S(A)
generated by the clopen subsets, let N(A) = I(A)/NB(A),
and let J(A) = (S(A), B(A), N(A)) € Borel . Notice that
for each §-morphism f: A —> B, S(£): S(B) —>s(4)
is in fact a measurable function foom. J(B) to (&),
which we shall call 3(f) in this context. From the fact
thatv 8§ is a contravariant functor, it follows that [ too
is a contravariant functor, from 5 to Borel; moreover,
the fact (Loomis [2¢ J) that A = B(A)/N(4) indicates that

By = ids . Letting > be the composite functor

o -Z—- Borel PZe  Sorel

we then also have B+J = id. .

An absolute Borel space is a set X équipped with

a Borel structure (B, 0) of such a sort that there is

a Borel set Y in the countable Hilbert cube and a 1-1
correspondence between X and Y inducing an isomorphism
between B and the Borel subsets of Y. We shall generally
write 1By for B in such an instance. Let ABS (.fesp.
EES) be the full subcategory of Eorel (resp. of 'Borel )
generated by the absolute Borel spaces. It is clear that
each at most countable direct product (in Ii_g_‘g_g) of

absolute Borel spaces is again an anbsolute Borel space,

and is the direct product in ABS. Also, the restriction

of the canonical projection Borel > Borel to ABS
yields an equivalence ABS —>ABS in terms of which we

may think of ABS as being a subcategory of Borel .
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Restricted to ABS, the Borel functor converts all

at most countable direct products to direct sums. Precisely:

(1.7.1) Theorem. ILet AE 5, i€ Borel ,
Js 3g € ABS . Then

.1. IB: Borel —> 5 establishes a 1-1 correspondence
between Borel(i, j) amd &(B(j), B(i)).

«2. If the index set S is at most countable,

¢
@ B = BC X 5.
s €8 . sE€s

‘ Proof: To establish .l., it is enough, since ~IB is
an immersion, to know that every 3‘-morphism is obtained,
a fact which is proved by Sikorski under slightly more
general circumstances [;2.5‘, (52.5)] . Then, using the fact
that IB¢) = id », we obtain (using .l.) |

9]
~ : ‘g. ~ ~ ~
SO B, &) = X 5B, &) &
scsS s€s

2 X 5By, BC3am & X Eorel(5a), i)
sE S | s€s

Borel( 2(4), X g ) & (B X 3g)s BC2@AM
s&-S a S

&, sC8

s(BC X 35, 4),
s€S

iR

which proves «2. »

It will be convenient to call a category countably
equational if it is an equational /\ -category where
rank( A\ ) £ No , and an equational functor between two

countably equational categories a countably equational functor.




Finally, an A-structure or an 'A-costructure (Q, G, £)

is called countably equational if A is. Then Theorems
(0.10.10) and (1.7.1) combine to indicate.tha# IB transfers
each countably equational structure over an absolute Borel
space (X, IBXI, 0) to a countably equational costructure

over the E—ring IBX s in a manner compatible with

countably equational functors and with Str(ABS, — )-morphisms.

A precise formulation is

(1.7.2) Theorem. For each countably equational

categbry A, there is a unique functor

,B: Str(aBS, 4) —> Costr(5, 4)

making the ciiagram

Str(ABS, 4) —5—> Costx(6, 4)

L
ABS = > 5

~commute, and if F: 4 —> A' is a countably equational

functor, then the diagram

Str(ABS, &) ?Costr(g, A)
Str(ABS, F) = lcostr(é , F)
22 B ) _
Str(ABS, 4&') —x> Costr(ws, A")
LES, &) —

commutes.

In the following section, we present some countably

equational categories to which this theorem will be applied.

T P




l.8 Vecto® lattices

Definition. A lattice ordered vector algebri (resp.

lattice ordered vector space) is a set  V equipped with

the structures both of an IR-algebra (resp IR-module)
and of a lattice, provided the implications (resp. the
first two implications)’ '

¢ (1e8s1) X<y =>X+2z2 < y+2z
(1.8.2) = x<y, 0<r & R => rx<ry (x,7,2E V)
(1.8.3) X<y, 0<z => x2< yz ,

are valid. A lattice ordered vector algebra is unitary
if its underlying IR-algebra has a unit. In any lattice

-

ordered vector space, Gefine unary operations , ~, | | by
x¥ = x\/0 "X W (=x)" , Ix| = x++:'£-,
and call two elements = and y disjoint if |[x|Alyl = 0.

(1.8.4) Remark. Conditions (1.8.1, (1.8.2), and
(1.8.3) can bas expressed equationally in terms of the
lattice ordered vector space (algebra) operations and

the additional unary operations as follows:

(A7) +2)NA\(y+2) = (xAy)+z,
(el A F)INAUxly) = Ixi(xAy) ,
(A 7)(2VOOINA(y(z2\V/0)) = (xAy)(zV0) .

Taken in conjunction with the fact that sy b JRE .

=

and lattices form countably equational categories, this




shows that lattice ordered vector spaces, lattice ordered
vector algebras, and uynitary lattive ordered vector algebras,
all form countably eﬁuational categories, say VL, AL, and
AL, respectively. It can be shown, using (1.6.13), that

if M 4is a lattice ordered vector space (algebra) and B

is a boolean ring, then " M#B is again a. laftica ordered
vector space (algebra), and that the step function functor

# gives rise to functors VLxB —> VL, ALXB — AL,

.:_&:];; Ké —9@; not needing thses facts in our development,

however, we shall omit their proofs.

A lattice ordered vector space is boundedly 6-complete
(Day (4, p. 963) or a Ks-space (Vulih (32, p. 95]) if

each. countable family of clements Xq9 Xpy eee having an

upper (lower) bound in the lattice order, has a supremum
(infimum); a (unitary) lattice ordered vector algebra

which is a K -space is called a (unitary) K -algebra.

A lattice ordered vector space is disjointedly ¢-complete
if each countable family of pairwise disjoint positive
elenents has a supremum; & disjointedly ¢ -complete |

K -space (i‘esp. (unitary) K -algebra) is called an L,-space
(resp. (unitary) L,-algebra). K_- and L _-spaces and
(unitary) K,- and L -algedbras form categories WKy, VL,

"~

AKo 3 AL, £K., {E-E‘o" whose morphisms are those in VL,

AL, or .KEI, preserving the countable lattice operations.

(1.8.5) Remark. Each category VK., YL,, 4K,,

”~

AL AKO ' g;.a, is countably equational. Indeed, a lattice

u‘ f-=



ordered vector space having an additional operation

F of length « satisfying

| xi/\li‘(xo, xi, Xy Xz4 eeed = X, /\X, (8 > 1%)
xOVF(xO', xl', X5y Xz eee) = Xy |
F(xo, xl/\xo, xa/\xo', 23/\::0, sen) ® ?(xo, Xy Xps X3 enie)
x/\F(xq, X \Xy X5/\%, x5/\x, ces) = F(xo, xl/\x, x5/\ X, x5/\x, i) | |

is boundedly G-complete, for
ok ;

and so if x; <xy (i =1, 2, ...), F((xi)i>0) 1\=/1xi '

whereas if x; 2x5 (i =1, 2y eeed, we have -xl < =%,

(1 » 15 2, «oe) 5 &0A -;.((-xl l>0) = -1\/1(-—}: ) = /\lx é

In any Kn_-space, conversely, such an operation is defined
- exactly by (1.8.6). A K -space having a second operation
G of length W satisfying

7sNG((x1)4 50) = 75
F(G((xl)izo)’ yO’ yl’ ya’ "') s G((xi)lzo)

where the y 's are inductively defined Dby

o = 1%l

(18.7) 5 =y VCix,l - vukancyk_lmxklm

is an I:d-space, for if the x 's are positive and disjoint,

then y, = xo\/ S ka by (1.8.7), and the equaitions that



G satisfies guarantee G((xi):.P-O) - \/ yi ; but
®

Ty

' xn 5 \/ x, In an Lﬁ.—space, ‘conversely,

i-O n=0 n=0

define G((xi) ) as follows. Form ‘zi L > 9],

i>0
which are defined by

29 = Vg ‘i:- Ty = i1 BzZd1)

whereﬂ;he y' 's are defined by (1.8.7) == so the

z 's, apart from Zq 9 are Jjust the parenthetical
expression on the right side of the sécond formula

in (i 8.7), and are therefore positive and pairwise’
disjoint =~ and set G((x. )1:’0) equal to the union

of these 2z 's. G obviously satisfies the first equation
it should (by the very construction of the 2z 's), and

it satisfies the other two because the union of the 2z 's
is, by an argument similar to that on the second line of
this page, identical with the union of the y 's. The
exhibition of these two operations essentially proves

the remark.

An element £ of a lattice ordered algebra A 1is
bounded if there is an idempotent e € A and a real

nunmber n>0 such that
-ng £ f = +ne.,

The least such number n is called the bound or sup nornm

of £ and is denoted [ifll (laterxr Ilfiim); we have

iff < n 4iff = idempotent e with |f] < ne.

S




Since |f] €< ne, |g! < nmB* imﬁly

If +gl <(a+mn)(e +e' - ee')
Ifgl < (am)T
(1.8.8) If Vgl < (aVmn)(e + &' - ee')
IfA gl < (aAm)e (if £> 0, g 20)

Irf] < Irlne (r € R) ,

we see that the set B of bounded elements in A is
. a lattice ordered algebra, and the inclusioz} of B in
A is an AlL-morphism. The same inequalities also -

indicate that B is a normed algebra. (Warning: all

this is nonsense if A is not Archimedean (definition

to be found, e.g., in page 8l of Vulih's book [32]);
our main interest, however, lies in X_-algebras, which

are known to be Archimedean: cf. [z2, TEOPEMA IV.1.5]}.)

Arguments like those above show that the bounded
elements in a . K -algedbra themselves form a X _~algebra.
Moreover, if A is an L _-algebra (or, for that matter,

a K -algebra with a unit), then the idempotent elements

form a boolean s-ring and the set B of bounded elements

is a Banach algebra, i.c., is sup norm complete. Indeed,

if {eyt is a countable family of idempotends, let

el
e'qg = 0, e'i':n\—-/le:': (i>1)
(i21)

= g8 . = €

1
e i i=1

Then the 6", are disjoint positive elements, hence have
L




‘o |
a supremum e = ;J’e"i_, and it is simple to check that
=l '

@ .
e = SJ;ei. is an idempotent. Now let (rk)k, , be a

i= - -
Cauchy sequence in B, so that there.is a sequence of
positive real numbers (tk)kv-l ‘converging to zero

such that, for each k,
I = feapll € 8 21D .

This means there are idempotents ekpb such that
I = Spapl < tpepy (21, p21) ;5

\ (o9 @
let e = \/ \/ekp; then |f, - £

| < tpe (all k, p) .
k=1 p=1

k+p

Now embed B in a O0-lattice B in such a way as %o
preserve the countable lattice operations (possible by

(0.7.7)) and, in B, form

A v

e £ £ = h. = 1in inf £
k=3 £’ g=1 9 X %
and :

. = lim sup fk .
k

The relation £ < f follows in the usual manner from
-the relations hj < hj+l < gj+l = gj. From the Cauchy
condition, on the other hand, we get

(1.8.9)




whence f and L are both in B and, since ¢,

converges to zero, are equal; the final fillip, that
"-‘f- = fk" 5 Etk

also follows from (1.8.9) and shows that B is

complete.

Since an AL -morphism sends idempotents to idempotents
and preserves order and scalar multiplication, it sends
bounded elements to bounded elements, in a norm-decreasing
way. Hence passage from an L D_-algebra to its (conditionally
s -complete lattice-ordered) Banach algebra of bounded

elements is a functor, which we shall call
"bdd: AL —> /) =category of Banach algebras .

(L810) Lemma. The functor bdd: AL.—> A prcs:rveé

kernels and arbitrary direct products. Proof:
Let £ € AL.(4, &Y, and_let % € ker (bdd(f)).

This means x is bounded in A and £{x) = O. Say
e and n are an indexpotent in 4L &and a pesitive real
number such that -ne < x £ +ne . Ve show that x is
bounded in ker(f), i.c., that there is an idempotent
E in ker(f) and a real number XN such that =-NE< x< +NE
(this will show that ker(bdd(f));_ bdd(ker(f)); the
converse inclusion is trivial). For each positive rational
number r form E_, = e/N\r|x|, let Erm = n=l,2/,\--- (Er)ns

and define E = \/ Erm . Then:
r20



a) r(Er) = 0 (clear) .

®) £(E°) = 0 (due to a)) . |

c) Erm is idempotent, so E exists, is idempotent.

a) f£(E) = 0 (due to b)) .

) lixll = N => |x| < NE (ﬁrooi‘: if |x| < ne, *hen
2 }ix] < e, hence -En_l = eAntixl = n7lyx) '
and since E ZEn"'l , nE > ix|) . Qed.

Next, let A; (1 € I) be a family of L,-algebras. Since

(ei)iEI € )<Ai is idempotent if and only if each ey
i€ | ‘

is, an element x € x Ai y Say Xx= (xi)i T is bounded

i€1I

. . sup
if and only if each x; is bounded and 1€T ix; i<

Thus: AL
bad( X &) = jx/x=(x), f%PI gl < o, GE4

L4
i€I . p
= {x/x=(x;), f“é iy < o xiEbdd(Ai)ﬂ- >é bdd(4,) .
il

This completes the proof of the lemma.

(1.8.11) Lemma. The functor bdd preserves

difference kernels and projecvive limits. Proof:

Let £, g & AL (4, A") and suppose f£(x) = g(x),
with x Dbounded in A . We produce an idempotent E
in the difference kernel of (f, g), i.e., such that
£f(E) = g(E) , and & real number n such thab Ix] < nE.
Using the spectral theorem on the Banach algebra B = bdd(4),
produce iterated positive square roots [x|2 2 of x|

and observe that lim sup lxla-n = lim inf lxla-n = E,



’

where E is the idempotent constructed in the previous lemma;

then £(E) = g(E) and |x| < lixiE. Thus
ker(bdd(f) - bdd(g)) € bvdd(ker(f - g));

‘the converse inclusion is again obvious. For the projective
limits, it need only be observed that évery projective limit
is the difference kernel of a suitable pair of maps between
aﬁpropriately chosen direct products. Precisely, let

(P, é) be a partially ordered set (usually assumed: to
have, the property that whenerer p, q € P, ‘there is

r € P satisfying r/p and r/q), and let F: P —>4
be a functor from the category P associated to (P,/)

- in (0.2.10) to an arbitrary category A4; a projective

~ limit of F is by definition a right representation of the

contravariant functor from 4 to S sending the object X
€ A to the set
{x/x= () ep € X AWM, P2, FloLad)ox, = x, 1 ; i
?
but for fixed X, this set of P-tuples of maps is the
- same as ker(fx - gx) , where fy and gy are both functions
from X &(X, F(p)) to X (a(X, F(p))xA(X, Fgq)))

pC?P p/a i
Dy QEP

defined respectively by

Ex(xpdpplpg = (po Xg) o
and

(Bx(x)cplpg = (ks FlpLQ)ex) .



Since bdd preserves products and difference kernels,

therefore, it preserves projective limits, too.

For later use, we remark that there is a notion dual

to that of projective limit, called injective limit; in

brief, if a situation with respect to a category 4 1is
such that, when transported to the dual category, it
becomes a projective limit situation there, then it is
an:injee¢tive limit situation in the original. We may use
- the terms projective and inverse (reép. injective and

direct) interchangeably in this context.




1.9 Step functions and functionoids

Since (IR, B=,0) and (IR, Bn, 0) I(where R
denotes the two-point compactification ‘-cofLIRi{+wY
of the reals and IB_ denotes the Borel sets of =)
are absolute Borel spaces having a &§-lattice structurs
and an é;s-structure, respectively (indeed, the latter
has an é;s-structure), using the usual operations on
the (extended) reals, and since the standard inclusion
IR-—é}fﬁ is a measurable function compatible with the
associated boundedly-3-complete-latiice structures, it _i
follows from Theorem (1.7.2) that the 5=-rings B and
By " have a well defined 5-lattice costructure and
égﬁrcostructure, respecvively, and that, for each Jﬁ—ring
B, the inclusion 3(233; B) -%5(131—?, B) corresponding
to the inclusion of the reals in their two~point compactifi-
cation is compatible with the associated boundedly- S—-complete-
lattice costructures. lLuch ﬁhe same can de said for the
costructures borne oy The & =-ring IBlR.f of Borel sets in
the set of non negative reals, the &=-ring By of Borel
sets in the complex numbers, the 5 =-ring Iijjj of Borel
sets in the unit circle (which has an AG-costructure), etc.

In particular, it can be proved that
§(Bg, B) & @%&Bm, B)

is a natural equivalence, which reduces "complex function

theory" to the "real function theory" about to be presented.




By (0.9.11), it follows that Bm-aoi has an
@“-costructure in 3 , that BJR“’-{ 0] has a costructure,
in ¢ , involving the operations addition, multiplication,
conditional suprema of countable families, positive real
scalar multiplication, all compatible with The counterpart
operations involved in the 4D -costructure on DBy (5 ==
indeed, that BIR"'-{O} is the positive cone in B.TR-;OE'
As the material unfolds, the meaning of these couments

will become more accessiblee. ’ .

There are intimate relationships Detween the functor
R#, the functor bdd , the AL _-costructure on Bm-}OJ“
and the left adjoint L.: LK. —= AL to the inclusion
functor of AL, in 4K (wnich exists by (0.7.7)), as we

now reveal.

(1.9.1) Theorem. Viewed as functors from 3 to

& » There is a natural transformation
R# —> bad(5(By_ign —))

making IR#B = linear span of the idempotents in j(IBIR—iO}’ 3)
for each §=-ring B; thus R#B becomes a normed,

lattice ordered IR-algebra, and as such it is norm-danse

in pda(5(Bp_gs B)) . Finally, (B, —) is
naturally équivalen‘c to Lg-bdd- GCIBIR-iOF‘ —), i.e.,

to L -completion-in-norm+IR#. Proof:

The proof is preceded by a few definitions and a lexma.




An element £ of (]BIR-{O} , B) is called a

(real-valued) fundtionoid on the 6=ring B. The historical

justification for this term is given by Gotz [/ . If

b is a Borel set in IR, the functionoid f on B is

called b-valued and is said to have values in b if
a € IBIR-{O}‘ aN\h=¢ =f(a) =0
and either

0€b

tor

£(R-i0}) is the unit element of B.

The soma f£(R-{0}) is, in any event, called the support

supp(f) of the functionoid f£.

(1.9.2) Lemma. If f, is a b,-valued functionoid
on the F=ring B (i=1, 2, «vs) and F: IRQ( —> IR is
a measurable operation.of len-.glth £ (< t'\'\;‘o) sending the
zero sequence 3o0.zero, then the induced operation, also
denoted F, on I:F(BIR-‘}O'; , B) has the property that
F((fi)lgi‘_/_a{) is b-valued for each Borel set b in IR
containing itx/x’F((xi)l_a_i<-x) s xi€ bii, = F(('Di)l{._i<v< 3 %

Proof: By the theorems on the transference of structure

to costructure, F((fi)i) is the composition

R ANEY

i<«

B By = = @

&4 £3
R-10'

’

where IB(®) sends the Borel set a to F—l(a) , the second




map is the ‘canonical isomorphism, and the other maps are
the obvious ones. It follows that if a is disjoint from
a Borel set b containing F((bi)i) then F((ri)i)(a) =0,

which proves the lemma.

(1.9.3) Corollary. A functionoid f is idempotent

(a characteristic functionoid) if and only if £ is

iO, l}-valued; a linear combination of idempotents ( a

step functionoid) if and only if it has values in a finite

set; bounded if and only if it has values in some interval

] v
[~r, +r] -- indeed, IUffl = inf /r/f is [-r, +rj—valued%.

Proof: Each asservion is a direct consequence of the

lemma.

We proceed novw to the proof of the theorem. Define

a function X: B —> S(E%P-*OL’ B) by assigning to the

L

soma b the functionoid X,: Bp _;»—>32 given by

>, 1€ a

X (e) = - s
O 5 l :" a
w /7~

Observe that each Xb is idempotent, and that X is
a mixed function, in the sense of §1.6 (also circular),
iees, that Xo\pp = X, VX, and Kapnbd = XaN\Ky = X0 Xy -
Writing V for the algebra of step functionoids, we now
prove that X induces an isomorphism IR#3B —;——} V.
Accordingly, let x & V ; say x has values in
the finite set {rl, Toy seey rn+li‘ where all the r.

i
are distinct and r ., = 0. By discarding and relabeling,

R i I T e pE——
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if necessary, we may assume that a, = x({ri} ) # 0 (1<4cn),
although this is not essential to the proof. In any event,
the fact that x, as a homomorphism from BJR—IO} to B,

is described by

x(®) = Via;/z; €0} - € By _go)
indicates that
n .
(1.9.4) 3% - ) ri)(a .
i1 i

Now let f € mix(B, M) M & IRJE) and suppoée that

an element g & M(V, M) makes the diagram

i

B—f—>yu
(1.9.5) I\\ Z
' v
commute ; then
n i
(1.9.6) g(x) = iZl Ty i‘(ai) o

Thus for each f € =ix(3, M) there is at most one element

g e:lag(v, M) making (1.9.5) commute; that, on the other
hand, there is at least one is seen by defining g(x{,

for £ € mix(B, M) and x of the form (1.9.4), by formula
(1.9.6). The verification that this definition is free from
contradiction is straight-forward and will be omitted, as is
the proof of IR-linearity; one appeals to Lemma (1.9.2) .
Thus X is a universal element making V a representation
for thne functor mix(B, — ), which concludes the proof, by

(1.6.7), (1.6.8), and (1.6.10), that V = R#B.,



Next, let f be a bounded functionoid on 3B,
and for each positive integer n define f_ € R#B by

P k+

fa " k=z_m =

o=

Xe(Crm, Go/n))

Notice that each sum is actually finite, since the
terms with |k| > (a+1)iifli are zero in the sum for £, -

Since lf—-fn] < n‘lX we see that f is in the

supp(£) *
norm-closure of the step-functionoids, and so the second
assertion of the theorem is verified.

Finally, if £ € S(Bm__?o,l s, 3), let

f1:1“'f"xi‘(['_'n,,::'.-1-1)) =€ 2);

_then_ [fnl/\lfk| = Q0 for n#gXkx and

£=(V £)-(A £,
229

n<0 a

which proves that (BJR-‘LO‘; y B) = I’J'bdd's(IBIR—}O’;” B) ,
and completes the proof of the Theorem, modulo the verifications

of naturality, which will be omitted.

Remarks. If 77 is an Lﬂ-algebra, if B 1is the

1)

S=-ring of idempotents., znd if bdd(W) is the Banach algebra
of bounded elements, onc can prove ng(bdd(‘.’!)) = uBIP-‘{O‘} < B)
(and bdd(w) = bddf\'ﬁ(BR_;_O;, B)). Moreover, the following

conditions are eguivalent:
1) W = I (bad(W))
2) W = S(IBIR-‘f:O}’ B)

e R T R R T Y e S T




3) W has positive square roots (of positive elements)
4) for each £ C W there is an idempotent E, & W
such that |gIAIfl = 0 iff |gIAE, = O
5) W has a local inversion, i.e., a unary operation
sending f to ~Ls satisfying
a) “le) = 7t g, TH(CMe) - £

b) -l £ is an idempotent E, as in 4)

and there is a 1l-1 correspondence between Lg-élgebra
structures with square roots on an L,-space W and
equivalence classes of maximal families of local order:

units in W (definition implieit in Kakutani [/ , Theorem 27,
Vulih [3;1, IIX. IV, §5]; called generalised weak unit by |
Goffman [ 9 , p. 1123 ), where a meximal family of local

order units /Ci refinas another ;cé‘ if for each u € F2

nat vAuw=v and vAQ@u-v) =0

ct

there is v € /A, such
and if the union of all suckh v (given =) is u; two
families are equivalent if they have a common refinenment
(under the l-1:correspondence, the local order units become
idempotents in the algebra structure). That 2) => 1), 3),
4), and 5) is obvious; the other statements will not be

proved, not being germane to our discussion.

It is easily proved (using the "boolean algebra of
idempotents" functor of (1.6.10)) that -a G-ring J is
injective in the category & if and only if bddc-(IBR_ (0% » J)
is injective in the category of boundedly < -complete lattice-

ordered Banach algebras. The question of the existence of




such injectives is as unsettled as the corresponding
Iquestion for A-rings. The related questlion of injective
lattice ordered Banach algebras (indeed, of injective
Banach spaces) is solved, in essentially the same way
as the question of inaeb.tive boolean rings, namely, U
is an injective Banach space iff M = bdd G(BJR-‘LO}’ J)
‘with J a complete boolean ring (cf. Gleason [§ J,

Halmos [/« ]}, and Nachbin {2/ ] ).

a—— v
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1,10 Densa extensions

This section is devoted ©to the elucidaticn of come
important propertics of the largest boolean ring 2A

A

containing a given boolecan ring A as & dense ideal., Call
a subseb A of & boclean ring B dense in B if sach nen
zero soma of B has non zaro intersection with some soma
of A. If A ig an ideal in B (even if meraly the
irplication ag¢ld, HbEB, bdfa == bEA is valid), that
intergection is again in A, sco that an ideal is danse in
B if and only if each non zero soma of B contains a non
zero soma of the ideal.

(1.10.1) ITemma. Let A b2 an ideal in the boolean
‘ring B, i) A is dense in B if and only if sach slsment
of B is a (perhaps infinite) uanion of elements of A,
ii) If A 1is demse in B, thep a boolean hcmomorphism
defined on B 1is a monomorphism if and cnly if its

restriction to A is a moncmorphisn,

Proof: Tet A be a dense ideal in B, b€eB. We show
b=Via/agb, a€hl,

For if an element ¢ €B 1is ©va whepnever a< b, wse may with
00 loss of generality assume (replacing ¢ by ecAb, if
necessary) that c¢<b. If in fact ¢#b, there is a non
zero a&€ A that is ¢ b“/:ic; this element a is therefors
disjoint from ¢, contradicting the assumptions on ¢
therefore ¢ = b, and b is the Andicated union.

Haxt, supposs thal the westriction to 4  of tt
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homomorphism £: B -2 C is a nonomerphism, If (b)) = 0,
then f(a) = 0O for each ag¢b (a& A); consequently, the
only element of A that is <€b is O0; by part i), b = 0,
and f is a monomorphisn,
Both converses, of course, are trivial,

By a dense extension of the boolean ring A we mean a

monomorphism m: A —» B embedding A as a dense ideal in B,
We term a dense extension unifying if B bhas a unit element.
What follows is of interest only in the case that A 1is without
unit, since each dense extension of a boolean ring with unit is
easily seen, by use of (1.10.1), to be an isomorphism.

‘ A morphism my =% m, between two dense extensions
m, 3 A -e,Bi (i =1, 2) is defined to bs a boolean homomorphism
L Bl — B, satisfying

(1-10.2) f' ml - ma .

In this way we cbtain a category E%A of dense sextensions of A4,
containing as a subcategory tha category ?IA of unifying denss
extensions of A4, '

(1.10.3) Lemma. There is never more than one morphism
from one dense extension m ¢ A ——éaﬁl to another m, A —2 B2.
If there is one, it is a monomorphism, viewed as a map from Bl
to BH' The relation -« definaed on SA hy Tq wed M,
iff there is a morphism my, =% 0, is & preordering with the
property that if Ry ek O and M, e my , then my and m,
are isomorphic.

Proof: The second assertion is a consequencz of (1.10.2),

(1.10.1 ii), and the fact that each m; 1s a monomorphism.
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Using (1.10.1 i), (1.10.2), and the now established fact that
agy f£: my —>m, mnust be a monomorphism between the By 's,
we have, for each b &Bl . |

£(b) = V {n,(a)/ach, ny(a)<2(b)} =

= V{my(a)/a€ar, f.n(a)<i(b)} =

= \/ [ma(a)/ae‘ﬂ, ml(a)-éb} .
which establishes the first assertion. The last assartion is
& consequence of the first two.

(1.10.4) Lemma, The following statements about a dense
extension fé& E%& are equivalasnt.

i) mwwd £ for all me &, ;

ii) fe UA and n «-3 £ for all me U, .

Proof: This is an immediate consequence of (1.10.3) and

(1.10.5) Bublemma. If me £, , there 1s m'e U,
with m e« m', Proof:

Assume the dense extension m: A -—> B is not unifying
(otherwise take m' = m), Let 'iBz B— B be the canonical
injection (¢f. (1.2.5)) of B in its unification. It is easy
to verify that iB is a dense extension (of B ), hence
n' = 1B.m: A -3 B is a unifying dense extension of A, and
clearly iB: m =3 m’,

(1.10.6) Theorem., Each boolean ring A has a largest
dense extension (in the sense that the equivalent conditions
i), i1) of (1.10.4) are valid), sey f: A —% @A . Ixplicitly,
/3A may be taken to bz the ring of compact opsen subsets of the
Stone~Cech compactification of the Stone space of A, and
£1 A =—n Pﬁ“ the map interpreting each compact cpsn subset of

the Stone space SA of 4 as a compact open sct in the Stone-
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Caech compactification /SSAQSA of SA.

Proof: We shall need to know (cf. Stome [27], [28])
that A is a dense ideal in B 1If and only if both i) SA
is homeomorphic to the union in 8B of a]:l the con;paqt open
sets corresponding to somas of A, and ii)lthat _u;_aion is
dense in SB.,

Now let m: A —+ B be & dense extension. By (1.10.4)
wé may assume that m is unifying, Thus SA becomes a denss
subset of the compact space SB +« By the universal property of
the Ston}e-Cech compactification, there is a (uni'qua) gon_tinuous
function /‘SSA —>» 5B leaving Shi pointwise fixed. The Stone
#uwality converts this to a boole_&n homomorphism B =i ﬁA
which, when compossed with m, yields f, qed.

(1.10.7) Corollary. The largest dense extension
A —— pA may be taken to be the inclusion of the compact open
subsets of SA in the ring of clopen subsets.

Proof: Ths clcpen sets in SA and the compact open sets
in PSA are put in one-one correspondence by assigning to each
clopen set in SA its closure in ((BA and to each compact
open set of ASA 1its intersection with SA . Since the latter
agsignation is clearly a boolean homomorphism, while the former
leaves compact open suosets of SA alone, the result is proved.

Stone [2’7, Daf, 8] calls an ideal I 4in a booleaﬁ iing,

B simple if beB =% JacI such that bA(b/Aa) has zero
intersection with each element of I, and proves IZB., Theoren 5}
that an ideal I 1is simple if and only if the union in SB of
ail the compact open sels corresponding to somas in I 1is clopen.

Consequertly, the inclusion A we—a feA may be taken tc be the
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inclusion of the family of all principal ideals of A in the

family of all simple ideals of A . Several other representations
of {;’tA will be of use in chapter 2. Ve need the following
lemma, however, to obtain them.

(1.10.8) Lemma. Suppose the boolean ring A appears as

a subset of Zx, for some set X. Defina
Py(a) = fY/ ve2¥, vyeUr, aeh =» Tnaehl.

Embed. A in {:}X(A) in the obvious way, and embed A in the
ring ,M(4, A) of A-module endomorphisms of ‘A by sending
ach ';;o the map "intersection with a". The map

ﬁX(A) —> ,H(4, 4A) defined by sending YE ﬁ\x(A) to the
function £y: A —5 A given by fY(a) = YNa 1s a boolean
isomorphism, compatible with the two injections of A.

Proof: i) ﬂx(ﬂ) ;_.‘g_ & boolean ring. ILet Y, Z € ﬁX(A) §

and let & denote either symmetric difference or intersection.

Whenever a& A, we have

(Y&2)na = (¥na)&(ZNa)eh;
similarly, (¥Y&Z)n UA = (¥TnUA)&(Zn UA) = Y&Z, so that
reze By(a).

ii) Bach fy is Ag&(ﬁ., A), This is a consequence of

the formulae

fr(ﬁ/\aﬁ) = Ynana' = f}((a)ﬂaa 4

fy@aAb) = Tn(aAb) = (Yna)A(Ynb) = £.(a)ALy(b),
where YE ,(A) and a2, a', bei,.

iii) £: Y = fy is 2 ring homomorphism. Indeed,

fyaz(8) = TaZna = £.(£,(a)),
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and. i

fyaz(a) = (YazZ)na = (Yna)Aa(Z2na) = fr(a)Afz(a) "

iv) f 4is one-one. TFor if fY = 0, then Yha =g for
all a&A, whence @ =|J{Yna/aea} = Ya la =Y,

v) £ 4is onto. Given g€ ,M(4, 4), 1let Yg = U{gla)/aea}.
We shall see that Y € /BT(A) and that ‘tY g . These facts

are immediate consequences of the formulae

Ygg U4,

ana = g(a) (ael),
of which the first is obvious from the definition of YB .

To check the second, observe first that
(1.10.9) g(a)<a (a&d) (since g(a)ra = g(ana) = g(a))

and that
g(a)érg (aeA) (by definition of Yg).
Consequently,
zgla) .
ana g(a)
The reverse inequality will follow from knowladge that

g(d)nacgla)
whenever a, b&e A, And in fact, g(b)na = g(bna)
= g(bna)ng(bna) = g(g(bna)a(bna) = g(g(bna)) = glg(db)n a)
= g(b)ng(a)geg(a), using (1.10.9) and the fact that g is

an A-module homomorphism, This completes the proof, since

the compatibility assertion is trivial to verify.
Remark: I% is a consequence of this lemma that the
multiplication in ,M(4, A), initially given as composition,

is in fact determined pointwise, i.e., that g(f(a)) = g(a)n f(a).
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(1.10.10) Theorem. There are unique isomorphisms as
indicated, compatible with the obvious inclusions of the
boolean ring A:

i) {5A 25 Ag(.&, A)
ii) {SA /@X(A) , whenasver A& ZX_
iii) pA

R

inverse limit of the inverse system

W

(iAa} TR Zpab’ Ay —-?Ab}a.;} b ) of all principal ideals
of A, where pg,(x) = xADb.

Proof: i) Applying (l.’..10.8) with X = SA, we sce that
ﬂsac“). = ,M(A, A). Because of (1.10.7), it remains only to
show that /-’ﬂSA(A) consists precisely of the clopen subsets
of SA., It is obvious that each clopen set is in /5SA(A) .
Conversely, let Y& (:L'Sﬂ(ﬁ) . Y is open because each Yna
(achA) is openand Y =Yn({JA = (J{¥na/ a€A}. To prove
Y is closed, take xeS8A, x¢Y (if this is impossible,
Y is certainly closed, being SA )., We find a neighborhood
of x disjoint from Y. Take any compact open neighborhood
U of x. Since U€A, UNYEA, and in particular, UNY
is closed. Since x¢UNY, the open set UA(UNY), which
is disjoint from Y, contains x.

ii) This follows from i) by an application of (1.,10.8).

1ii) Consider the direct system of principal ideals of A

({Aa} aéh ?'jab: Ab '"_“_"Aa} az b) (Jab(g) =x).

Obviously A = lim A, . Consequently, using )5

A= M(A, A)=  H(lim A

8 . A) m 3@3;-1?— AE(AEQ A).

Using (1.10.9), each A-module homomorphism from A to A

actually takes values in A , so that
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Ay s A)E MG, AL,
and a gimple change of rings argument shovs that
AE(Aa 9 Aa) = ABE(Aa ¥ Aa.) ’
finally, since A, is a poclean ring with unit?

Aa-&j(ﬂa ’ Aa) = Ay

It is left to the reader to check that the diagram

M{4 AY =t > M(A, , A
a¥lhq o )A@(Jab,A) a4y, 1)

R it

‘ Ay 5> A

Pap
commutes; once that is known, all is knomn, since the uniqueness

b

of these three isomorphisms is due to their simple existence,
by (1.10.3).

(1.10,11) Corollary. ILet W be a cardinal number and
A a boolean ring. ;GA is ¥ -~complete (resp. completa) if
and only if each principal ideal of A is Y-complete
(resp. complete).

Proof: If pBA is Y{-complete, so is each principal
ideal of A, in particular, each principal ideal of A,
Conversely, if each principal ideal of A is H -complete,
the fact that each map p,, in the inverse limit representation
of pA is a complete homomorphism guarantees that pAA, the

inverse limit, is also ¥ ~complete. Take 'R= card ph for

the completeness portion of the corollary.
Remark: This ccrollary can be used to prove that a locally
coizpact totally disconnected Hausdorff epace is basically (resp.

extremely) disconnected iff its Stone=-Cech compactification is
(\,Gfa {7? L] ‘:2?] )B
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Two more lenmas will be useful in chapter 2.

(1.10.12) Iemma, Iet o: Q) -—P & be the left adjoint
to the inclusion. Then if A is a &-ring, the canonical
g-morphism GA -——> (34 induces an isomorphism @A = poA ,

Proof: Remark first that 6A is a dense extension of
A, since each soma of 6A is a union of at most countably many
somas of A. Consequently, foA is a densé extension of A,
and as such, provides a map p¢A -——> @A, a morphism of dense
extensions of A. On the other hand, the fact that @A 1is a
dense extension of A provides a map 6A —> @A, which it is
not hard to see makes fﬁA a dense extension'of 6A; this is
the mwap mentioned in the lemma. It induces a map pA —> f@gA,
which is also a morphism of dense extensions of A. By (1.10.3),
the proof is complete. _ |

(1.10.13) Iemma. If B is a complete boolezn algebra
and A 1is a dense ideal in B, then B = ,3A %

Proof: Since B 1is a dense extension of A, there is a
monomorphism g: B — pﬁ.. Using the fact that B is injective
in B (being complete, cf. [14}), obtain a retraction
h: pA —3>» B with h.g = idB. Both g and 1 are morphisms
of dense extensions of A, and an application of (1.10.3)
completes the proof.

(1.10.14) Proposition. Iet A and Y Dbe the categories
of A-complete and cumplete boclean rings, respectively, with

complete homomorpnisms (not necessarily preserving units). The
obvious inclusion Y -—> A4 has a left adjoint, sending A to A .

Remark: Froposition (0.7.7) is useless in this context,
8ince Gaifman's theorem thatt there is no free complete boolean
ring on a countable set of generators (or rathex, that the best
candidate for such is a proper class) indicates that we are not
looking for the left adjoint %o an equational funchor,



1.10 Dense extenéions

Let CR Dbe the categofy of completely'regular
Hausdorff topological spaces and continuous maps, and
let X be the full subcategory generated by the compact.
spaces. The Stone—Eech compactification pro?ides a
functor 2}: CR —> X left adjoint to the inclusion

'} I: X —>CR. Being a left adjoint, 5 preserves

direct limits and direct sums. Illoreover, f)-l | is
naturally equivalent to the identity, and it'follows
that direct sums and direct limivs in the category

K are given, in terms of direct sums and direct limits

in the category CR, by the formule::

dir lim T_ = A(dir lim {T_1!)
- i"n
pEPr P ° p€p ¥
m T,
(1.10.1) . - (T,, T, € K).
Eg_ o= 00 € n))
2 I 1t 2

By the definition of.completely regular, IR is a

cogenerator in CR, and has an AL-structure to boot,

and it follows that a continuous map £f: T —> T!

(T, T' compact) induces aa AL-isomorphism between
CR(?y, IR) and CR(?', R) iff £ 4is a homeomorphism.
Since IR Dbehaves like an injective for the subcategory
K (in the sense of the Tietze extension'tbeorem),

cach compact space T 1is determined by its /[L-object

CR(T, R) (Stone-Cech classification theorem).

- -v--——--‘- OB A P i LA S R L i

e e o w4 ey
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A completely regular space T is rather disconnected

if CR(T, IRR) has enough idempotents, i.e., if for each
pair of distinct points in T +there is an idempotent in
CR(T, IR) separating them. To be rather disconnected, it
is clearly hecessary and sufficient that the clopen sets
generate the topology. It follows from the definition that
T 4is rather disconnected if and only if ﬁ}T 1s (cf.

[7, 16.D.2]), and from the topological formulation that
for locally compact spaces, to be rather disconnected,

to be totally disconnected, and to have a topdlogy generated
by the compact-open sets are equivalent properties: cf.

y 16.7] « A completely regular space T is basicall
7 basically

disconnected (resp. gxtremsly disconnected) if CR(T, IR)

is a Kq—algebra (resp. conditionally complete Ky—algebra).

O]

Topologically, basic disconnectedress is equivalent to the
requirement that f-l(o) nave closed interior for each

£ € CR(T, R), and extrcme disconnectedness, to the
requirement that the interioxr of every ciosed set be closed.

(For other wvarieties of disccnnectednsss, see Stone [29] or

Coken [3 1 .) Thus extrerze disconneciediness implies basic

disconnectedness, waich in turn implies ratvner disconnectedness;

that dasic ox oxtreme disconnccetedness Lo & cpace T s
is equivalent %o the corresponding disconnectedness for /@T

follows easily from the lattice-theoretic definition.
/

Finally, a boolean ring B is a (-ring (resp. an /\-complete

boolean ring) if and only if its Stone space (without base

point) S(B) = S,(B)-Ebase pt.K is basically disconnected

e A T . e A g <

e T S B TR

R
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(resp. extremely disconnected). . This foilows from the
embedding of B (as characteristic functions) in

CR(S(B), R) provided by the Stone isomorphism.

Call a subset A of a boolean ring B dense in B
if each non zero soma of B has non null intersection with
some soma of A. If A is an ideal in B (even if
a' <a € A =>a' € L) that intersection is again in

A, 'so that an ideal is dense in B iff ecach non zero

soma of B contains a non null soma from the ideal. A

dense extension of a boolean ring A is a boolean ring B

containing A as a dense iceal, i.e., is a pair (B, n)
with m: A —> B a monomorphism embedding A as a dense

ideal in B. A unifying cxternsion of A is a dense

extension (B, m) where¢ B has a unit elexment. If

(Bl, ml) and (32, 32) are two dense extensions o5 A,

write (Bl, ml) =2 (By, 22) if there is a boolean
homomorphism g: Bl —-é-BE such that D, = g*my .

Notice that g =must be 1-1i, for if g(bl) = 0 with

0 # by - By , there iz a € A , non zero, with n,(a) <y,
and it follows that O = 3(b1) Z’g(ml(aD = mg(a) #0,

a contradiction. Moreover, it can e shown that such a map

g is unique, for its valucs must be given by the formula

g(bl) =V Emz(a)/ml(a> < bl y & € A-} (bl€ Bl)-

Thus g preserves whatever unions it can.



Notice that A 1is a dense extension of A, and is
the smallest one in fhe sense of the partial order =3 ;
that the unification (ﬁ, ip) is a dense extension of
A if and only if A has no unit, and in that case is
the smallest unifying extension; and that each dense
extension of A is smaller than a unifying extension
-= nanely its unification, if it had no unit to begin with.
The last observation indicates that if there is either a
largest dense extension or a largest unifying extension
of A, then both exist and they are equal (mbdulo »u}-j.
In order to prove the existencé of a largest unifying
extension, let us translatec its universal property into
the Stone space language. We shall nzed %o krow (cf.

Stone [z;].,[zgj) that 4 is a demse ideal in B if and
only if S(A) 4is honmeozorphis t0 the union in S(B) of all
the compact open scts corresponding tﬁ elements-of A and

that union is dense in £S(B) .

A wnifying extension (HA, J) of A has the property

bd

that (B, n) «-» (5£q 3) Zfor all unifying extensions (B, m)

of A if and only I cach embedding n of A4 as a dense
ideal in a unitary ocolearn ring B gives rise to a unique
unitary mep g: B —> 4 such that Sen B Js wnich in turn
is the case if and only if whenover S(A) 4is a dense open
subset of compact S(B) there is a unique map from SQ%A)
to S(B), whose restriction to S(A) is the identity,
which, finally, occurs if and only if SgﬁA) =f6(S(A).

This argument proves:

A B g R

i . i e
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(1.10.2) Theorem. There is a maximal dense extension
(necessarily unifying) ﬂ}ﬁ for each boolean ring A, and

S(/ﬁ(A)) = /f@.(S(A)) , a fact which characterises it uniquely.

(1.1043) Corollary. The boolean ring of clopen sets
in S(A) is isomorphic to /QA . Proof:

The clopen sets in S(A) and those in /B(S(AJ) are
put in 1-1 correspondence by assigning to eaéh clopen sev
in S(A) 4its closure in ;S(SC&» and to each clopen set
in /S(S(&» its intersecfion with A since the latter
assignation is clearly & Doolean homomorphism, the result

is proved.

Stone [27, Def. 87 calls an ideal I in a boolean ring

B simple if b € B => - a & I such that b/ (v/\a)

haw zero intersection with each element of I, and proves

[23, Theorem 53 tnat an ideal I 1is sinple if and only if

n

the union of all the compect-open se¥s corresponding to
elements of I is clopen. Conseguently,
(1.10.4) Corollary. ,“ i is isomorphic to the family

" of all simple ideals of L.

(Remark: If A has no unit then A, the smallest
unifying extension, has Stone space «((S(A)), the one-point
Alexandroff compactification of S(A), which is just S,.(4).
Just as o/ and {{; are just about the only manageable
compactificationé in general, so are A and %A the

only manageable unifying extensions.)

2
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Observe that, in the category CR, S(A) = dir lim S(Aa) s
a g A

where A, is the principal ideal {x/xf_a} in A generated
by a. It follows that

s(/’ ) = /%(s(A)) = dir lim S(A,) = S(inv lim A_)
a € A a € A
using (1.10.1), where the direct limit is formed in K and
the last identification is due to the fact that S is

a contravariant isomorphism. Thus:

(1.10.5) Corollary. A4 = proj lim,
; " 8.€ A =
Those who dislike Stone spaces will have no difficulty

in proving (1.10.5) directly, or, if they prefer, from (1.10.6).

(1.10.6) Corollary. (o= M(A, A) .

Remark: This result was pointed out by M. Bzrr, who
proved it directly from the definition.

Proof: The ring structure on A:;E(J:L, A) is of
course obtained by composition; in this way (4, A)
becomes an A-algedra. It is a boolean ringz since

(£.£)(a) = £(2{a)) = f(aNf(a) = £(a)A\f(a) = £(a)
for each A-morphism £: A —>A and a & A. An
A-algebra homomorphism from /%A to JJ(A, &) 1is given
by sending b to the map ”iritersect‘ion with d" . To
show it's an isomorphism, take first the case when .A has
a unit element. Then sending £ & ,M(4, 4) %o £(1) € A=/24

. i

provides an inverse nmap. In the general case, we have

R

it g e e A

PRt o= P 4
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the isomorphisms

I’.'I(A) A) - M(dlr lim A ! A) & inv lim (A )

A% e a € 4 a’ : aeA‘“:

)

L4 = inv 1lim ‘a‘a inv lin 3 (Aa' A )

y aC A aC A “a”
so we need only see that M(A s A ) = :‘,( y A) . But

4 € AE._"E(Aas A) @

£(0) = o/A\£(p)<p  (all b<a) =>

£(v) € A, fox BE -
and so each element iz :;‘a" ;-.)' can be interpreted as
an A_-morphism from i, <To 4, . Cozversely, if
£, MA,,A), c€4, anc DE 4, , thaen

a
cA\£(b) = cAL£{bAa) = cAaAz(b) =
= £(dAcAa) = £(dbAaNc) = 2(d/\e) ,

i.8., f can be interpreted as an A-morphisa from Aa to A.

o~
i

This completes thc prorf o

Corollary (1.10.7). A

ﬁA is a J=-ring. 4L is a

ci*

8 i

'\}

-and only if 4SA 1is ccumzle
if both

Proof:

G L] ac-k

)A/A (the quotient in 3) and

the corollary.

is a (~-ring if and only if

/\-complete boolean ring if

is a 5=-ring if and only

"11% are 5 -rings.

A ¢-ring & 5(A) basically dlaconnectcd =

/A(S(A)) basically disconnected & 34 5 -ring with unit

& A G-ring.

L]

For /\-completa replace "basically" by
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"extremely" in the above argument. The last assertion of

the corollary is obvious.

(1.10.8) Lemma. Let @ :§w~ﬂ & be the left adjoint
to the inclusion. Then if A is a %-ring, the canonical

f-morphism 9 (A) —= /3(A) induces an isomorphism

B Z Ao@).

Proof: ¢ (A) 4is a dense extension of A, since each
element of G (A) is a union of at most countably many
elements of A. Consequently, ;5(5(3)) is a dense
extension of A, and as such, comes equipped with a

monomorphism A(s(A)) — 3(A) . On the other hand,

/
the fact that 5(A) is a dense extension of A indicates
that there is a map from J(A) %o 3(h), which it is

not hard to sec ralzes {(A) a dense extension of T (AD.
This is the map mentioncd ZIn the lemma, and the map from
ﬁ%(&) to A(S5(A)) that it induces is readily seen to

be inverse to the map ~2(7(4)) — 5(4) Just constructed,

which proves the lecmrma.

(1.10.9) ZTemma. If B is a complete boolean algebra
and A is a dense ideal in B, then B = fﬁﬂ. Proocf:s
Since B 1is a densc extension of A, Ehere is a
monomorphism g: B —> L. Using the fact that B 1is
an absolute retract in 3 (being a complete boolean algebra),
obtain a map h: AA —> B with heg = id; . To see that g
is an isomorphisﬁ, which will prove the lammz, it is enough

to see that h . which is onto, is 1-1l. Accordingly, let
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0#a € IBA.., and suppose h(a) = 0. ILet Jj: A —5*/3.&
be the standard inclusion, and find a' € A such that

0 # j(a') <a.

Then
O = h(a) 2 h(j(a') = n(g(a') = a' , contradiction.
(1.10.10) Lemma. If B = A/N (quotient in B) , False,
then /3B = r.-f:)A/ it . Wwhere See

f [

N = 'in/ne:ﬁﬁ, n/N\a €N for all aEAT; :

Proof: Let f: A —> B Dbe the projection map. It
inv lim o ~ inv linm

3. = B .
- ) . f(a
>€B 0 a€a 1@

induces an isomorphism

. _ » ® A ~ . “ha L =
Since Bf(a) = “a//hr\“a » We sce that g'B

. - inv lizm A
_ inv linm ‘ﬁ‘a/Nn‘E"a= a

£2.7.

‘n/n & invlim A

a & A

a

(1.10.11) Iemma. Let A and Y Dbe the categories of
/\ -complete and complete bYoolean rings respectively, with
complete homomorphisms (not necessarily sending unit to unit).
The obvious inclusion Y ——ﬁn( has a left adjoint, which
sends a A =-complete ring A to /[3A.

Remark: Proposition (0.7.7) is of no use in this
situation, since Gai ‘zan's theorem that there is no free
complete boolean ring onla countable set of generators (or
rather, that the one there is is a proper class) indicates

that we are not dealing with the left adjoint to an eguational

functor.

, o, € N all aca?’

o v e 3,

e

TR Ao A R TR L N AT
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Proof: If m is a cardinal number, let 1=3(m). and

B, be the categories of boolean rings having all m-fold

intersections, resp. m-fold unions, with boolean homomorphisms
preserving these operations as morphisms. By Deliorgan, each

Qm-ob;ject is also a g(g)-—object and each gé-n_zorphism

likewise, so that there is a natural inclusion functor

]=3m —>1__§(m) « It is an equational functor, in fact, hence
/7 ; i
has a left adjoint, say f-’_‘)m . DNow a boolean ring A is

/\-complete if and only if A is a gtm)-objept for any
(hence every) m 2 card A, and a boolean homomorphism from
A to a /\-complete ring is ‘complete if and only if it is

a B(m)-—morphism for any {(hznce ecvery) 2 card A. Now

a. A - . ox S 8 - -
card flAﬁ 2""‘"‘1"‘1 s Since :very elecent of /5A 1is a union

of elements of A, and E,w(ém(A), B) 7= gcm)(ﬂ, B) for

=4

each gm-ob;iec‘t: B; in particular, if B is complete and

card A

m > 2 > )’(__.."ﬁ')ﬁ(ﬁ), 3) = A(A, B) , by the remarks above.

.

Finally, f.f??m(ﬁ.) = (L), since each contains A as a dense

ideal and is complcSe, when @ > Tais proves that,

ik}

uanctor, and a rather

Ky

on /\-complete bclean rings, - is a

well-behaved one atv that, being a lelt adjoint.

We shall have occasion later $o deal with what acts like

its inverse. It shouldof cousse be emphasized that /3 is

>

not without restriction a functor from 3B to only on
A does it behave well, and there, to some extent, it replaces

the unification functor (l.Z.0.5.).
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(1.10.12) Iemma, For any g-ring B, the norm
completion R%BB of IR#B in the topology induced
by the functionoids on /B is isomorphic with the
projective limit 2V B ®ER .,  Proof:

b & B
Ri# (°B = bddﬁ(mm‘%o‘{i;v;fi -
= bdd 7B _: 1 )
IBE {0y ? b E B Bb
inv lim
= bdd 2 (B _cqis Bn)
inv lim inv lim Tl
= bdd (B _ .41y B) = T T REB
using (1.8.11), (1.9.1), 2nd (1.10.5).

Remark: For any boolecan ring 4, no matter what
embedding of A in a OJ-ring is chosen (that there is one
is due to (0.7.7), as pointed out in §1.2), R#A can
be interpreted as the characteristic functionoids
7y X, with the a, all in A; with this identification

(whose proof is likc %txe proof of (1.9.1)), IR#A Dbecomes

atsice in a unique way (the same way as

[

a normed vector
indicated after (1.5.13)) ; wo shall call its norm-completion
IR;EA, also when A fails to be a 4S=-ring. E%A is then
always a Banach lattice (and an abstract (lf)-space in the

sensz of Kakutani Eﬁ?] ¥ 4
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2.1 Finitec measures

A real function ({ defined on a boolean ring B is
mixed (Definition (1.6.1)) if and only if whenever a/\b = 0
the equation ru (a\V/ D) = La) + }u(b) is valid, i.e.,

: .

if and only if [{,L is a finite measure, in the traditional
terminology to which we now revert. We thus know from §l.6
that the finite measures on B and the linear transformations
R#B —> IR are in natural 1-1 corre'Spondence. I ijb(
denotes the transformation corresponding to'a finite measure

}(,L , we have the following easily verified properties.

(241el) i{u is a positive linear functional iff /,f(a)zo

for a1l a & B;

sup § 4(d) /b al ;

]

i + 5 where /L,t'"r(a)

4

(2.12) (ip)'*

(B+1:3) (iu)- , Waere 'I,«.f."(a) sup 1;—/c((b) /b<aj ;

.'-fu( e

(2.1.4) If /L,{ is positive, i is bounded if and only if

Py
sup () /v & BT is finite, and in
e;tae: case Eii{u i = sup f{!u(b)/ b € 33)5 ;

(2+1+5) 'ﬁ‘or any finite measure Lo i/‘{- is bounded if and
only if & ill = sup | rrf(b)/b c B f +
* sup ((T(0) /D € B! is finite, and in
either case, Hi{u = ii/L{ I‘.l .

(2.1.6) i;.{ = Tiuq * siy, iff /u(a) = r,u.l(a) + s/ug(a)
for all a & B.

Let Vl(B) denote the normed vector lattice of finite

measures /‘{ on B for which ii/u iil is finite. -
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(2.1.‘7) Theorem. The natural equivalence between finite
measures on B and linear transformations from IR;"3 to IR
induces an order preserving, 'isometric, linear isomorphisnms
between Vl(B) and the continuous linear functionals on the
norm complelteion R#ZB of R#B. Proof:

R#ZB is intended as in the remark following (1.10.12).
Properties (2.l1l.1) through (2.1.6) indicate that Vl(B) and
the continuous linear functionals on R#B are in a 1l-1
correspondence- of the typ desired by the theorem; but the
continuous linear functionals on IR#3B have‘ unigue extensions

to the completion, which proves the theorem.

For the rest of this section, and in the next section, we
"shall drop the adjective finite when speaking about finite

measures. The adjective will be reinstated in §2.%.

- A

Suppose now that 2 is a “-ring. A measure )bk on B

is a j-measure, or countably addivive, if it satisfies

(o8]
o &
(2.1.8) a; /\ ajy =0 (14 3) = }A(i\=/lai) =i‘:‘1‘“<ai) "

(It is intended that the series converge absolutely, i.e.,

unconditionally.)

(2.1.9) ZLemma. If 4t is § (=-measure on & s=-ring B,

then /J.+ and 4~ are also g-measures, and Al evl(:a) »

|i w
Proof: If ai/\ ay = 0 (i#3) and a = j\/:L a; » we
1=

feo)
N + :
show )u"'(a) = Z u (ai) « For sach i, choose a;, < 8y
=3



26k

-—

such that /,((ain) > }Lk"'(ai) - -}1- (n=1, 2, +..), and let

fos)
by = ;1\=/l a4, 3 3an easy -argument shows }U(bi) - /4.(+(ai) .
and so Zi ,U"'(ai) = Ei IU(bi) = f"‘(\/i bi) < /u*(a) . On the
1

3 +
other hand, selecting b <a so that. /U(bn) > /(J( (a) = =
(n=1, 2, «e.) and setting b = \/n b, , we obtain

fu(b) = /j"(a) - DNow let by =Db/\a;. Ve then sce

X <
.+ - - 1 +,a1 “+
which proves /g,\+ is a {-measure. The argument for /Lt-
is similar. Now suppose trat somas ¢, can be found with
- 5 -

]LA (cn)Zn (nal, 2y ...). Then /Lm (\/nan)_?EQ for
each integer n, and so U ¥ is not a finite measure,
which is a contradiction; hence Iy T is bounded; similarly,
fv[— is bounded. I% follows that Ll & V,(B) , and the

lemma is proved.

b

Write Wl(B) for the subspace of V,(B) consisting of
the S -measures on B, waere B is a s-ring. Let Ju De
a positive element of T.?._I(B) y B svill a §-ring, and
suppose that the extension IH to MR#B = bddﬁ(IBE_Eo}, B)
of the linear functional i}’L on IR#B has the Daniell

(or Beppo-Levi) property:

(2.1.10) £, € R#B, £=\V_ £, € R#B, £ &£ .

Then if ai/\aa. =0, a; € B (i=1, 2, +..), we have
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B ey

n n . B
) = I = I = I :
iZl way) izl 1) P‘(igl Xa) = Tu(X 5 )i
Voay
i=1
the Daniell prOperty ensures that I. ( X ) converges to
4 \/ a;
i:

(X g )= P\(\/ a;), so that if I . is positive,
i=1 '

i B
/ a,
i\= 173

bounded, and Daniell, (A is a ¢ -measure. The converse is

true, that if P~ is a positive ¢ -measure, then I is

A
Daniell, so that the space Wl(B) corresponds, under the
isomorphism of (2.1.7), %o the linear combinations of positive
bounded Daniell functionals on IR%EB. The proof is not
immediate, however, duv requires some preparatory material.

In the meantime, we may call a continuous linear functional

on R#B Daniell if its positive and negative parts have

the Daniell property

(2.1.11) Lezxza. 3 is a §-ring, (i is a positive
§ -zeasure on B, f azd f, (k=1, 2, «...) are real
functionoids on B (not necessarily bounded), with

lim sup fk = f = lin inf £, . For each pair of real
k X

numbers e >0, 4 >0, there is a soma B(e, d) and

an integer N such that fk(B(e, d)) < e, and such that

whenever - X is a soxa disjoint from B(e, 4), the

inequality EX (¢ - f) < 4 is valid for all Xk ZN.
Proof: Subtracting f from each fk s 1f necessary, it

may be assumed, with no loss of generality, that £ = O.

Restricting attention to the principal ideal generated by
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any soma containing the union of the supports of all the

fi» if necessary, we may assume that B is a &-ring,

with no loss of generality, since if X is disjoint from

the support of each fk sy it is disjoint also from the

support of £, and consequently H xﬂi(fk - f)”

The functionoids £, £, may therefore be thought of as

G-morphisms from B to B, and the assumption f = 0

means that for each Borel set b in R,

(o, o0&

f(b) =

11 sy O0&E b,

where 1 denotes the unit element of B. Letting
@

Vk \/ fn(("cos -d))

- A=k

(k=1, 2, ...)

n

a9]
Uk /\ fﬁ((-CO, +d))

the hypothesis 1linm inzk £, = 0 = lin Sup,. fk indicates that

"k
@ @
;Za Dk =1, ézi Vk =0 ,
Ul i L :_“"' Un-l S Un k] .‘Jrn :: vn-l S LB S Vl L]

Hence, introducing the notation

A = B AN AT ¢ B =1 AL

S eee SA SA, B SB 1< ... SB

1
®

o0} 8 0] @D

Vodo= VOO A (GAT) = VT A A (AT ;

k=1 k=1 k=1 k=1
1/A0=1,




Ia
[y

)

and the fact that [ is a G-measure implies
j

lim, /“(Ak) = [ (1), liamy, },l(Bk) =0 .
Choose N so that ’u (BN) <e, and let By = B(e, 4) .

The inclusions

Ay = LA BG4 Uy £ £, (-, )

(all k >N)
AN\ ((mo, =) < AN\ Ty = 0

indicate that X, £ 1is [-4, +d]-valued , (k >N), i.e.,
N
that [} X4 A\ By £, .t <@ vhenever k Z N, which proves

the lemma.

(2.1.12) Corolliary: Egoroff's Theorem. In ti® situation
of the previous lemma, there is & sona B(e) , for each real
number e > O . outside of which the convergence is uniform
and for which K (B(e)) < e . Proof:

Use the lemma to construct somas By = B8(2 e, %) and
integers N corresponding to the pairs (2 e, %) A

o8 _
and let B(e) = \/ B, » Since (Bn) < 278¢ ., we have
0 n:l s f
(B(e) < Z 2™ s = 2., To see that the convergence is
n=1

uniform outside B(e), let & >0 be given. Choose

an integer n = o , and let k=N, . Then if the soma
: o imid P - : (s - 1

X is disjoint from B(e), i Xy (£, Disg=a (oy

the lemma, since X/\ B, = 0) , and the corollary is

proved.
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(2.1.13) Corollary. If }k is a positive § -measure

/",L

It is enough to verify that if (fk)k=l,2 is &

,...

on a (§~-ring B, Shen I is Daniell. ZProof:

decreasing sequence of bounded, positive functionoids
with infimum zero, then I}{G;j converges vO z2ero.
To this end, letting e > O De given, we produce an integer
N so that I ,(fk)-< e whenever k ZN. First of all,
obtain a soma 3B = B(2i ~) , using the Egoroff Theoren,
]
so that whenever X/N\B = 0, ;g)%ifnll converges to zero
uniformly wivth respect to X. Then | '
A st T £ nf 2
0 i I/'t(fnt\B) g ."":1. I;{"(B> —_ 1!1/('(3) < 2

> by < e 6 b s on - =
since O = f Xy “£.0 Xy = (£ X3 » for all integers n.

- L

Therefore, selecting N so that wnencver k PN and

et S
5 @©
XAB=0,; B Xel & 5 - o and letting 4 = /supp(f. ),
KT AN ol b n
4 n=1
we see that wherever k > X, we 3cv the inccualities

loed = Tulhy 50 = Ty Cgna i) = < W () )

=4 :{B:lc> N -_:'C" N\ (BAL) 1-:
o o " —— - d (3
=3 + '2——"—_.' :IU (:‘x& (B \ A)) ‘S— - = e,

which completces the proof, both of the corollary, and of

(2.1.14) Theoren. B is a S-ring. Under the isometry
between V,(B) and the dual space (R#B*, tne space w1y (3)
and the Daniell functionals are puv in l-1 correspondence

with each other.

B T P ———————S TR S
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A finite measure J on a_complete boolean ring is

called normal or completely additive if it satisfies

(2.1.15) a;Aay =0 (i£3) = p (igl a;) = igl HCay)

for each index set I, where the sum is intended to converge
as a net over the finite subsets of I. The proof that

Fk+ and ﬁi_ are normal if }t is can be modeled on the -
proof for ¢ -measures, once it is observed that at most a
countable number of somas in any disjoint fawily can have
non zero measure (otherwise the sum in (2.1.15) wouldn't

exist).

s

It must be pointed out vhat if B 1s complete, then
S (D%R-?Ol’ B) is conditionally complete in its lattice
order. For if (f*>'E:T is a family of positive functionoids,

define a functionmoid £ & (B _-q1s 3) 0¥ specifying

f((—CI), O)) =

£((0, ) = %/ £,(00, 2))  (z>0)

(0] ; e8]
Since ;j\—-/l £((0, r4)) = : iélfi((o’ 500 =

(241416)

((O, Sup. I, )) = f((O'J sup IT. )) ]

i I J

o)
\/ £,0004 £:)) = Y
J-tI 1 ° . €
there is a unique §-morphism If: IBEI—{O}'-_Q’B with
f((~o, 0)) and £((0, r)) as specified in (2.1.16),

and f is obviously the infimum of the family (fi)iGZI .

A few more observations are in order.

. e S s i 25
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(2.1.17) 1. If 3 is a & -ring (resp. complete
boolean ring) and ;,( is any positive extended-real-valued
function on B satisfying /J(O) = 0 and

(2.1.18) b <
i

€-Ia.i — /u('b) < Z’“(ai‘)

i€I
for each countable (resp. arbitrary) index set I, then

T 4 L
N‘u = },L (0) = lat/a.€B., /b(a) 0f

is a (-ideal (resp. complete ideal) in B .

2. A positive @§-measure /J on a complete
boolean ring is normal iff N},L is a complete ideal.

5. If (i 1is a positive y-measure on the
G-ring B and 0< f & R#B, then I/u(f) = 0 if and only
if supp(f) € N,

4., If 3 is a complete boolean ring (resp.
a ¢ =-ring) and Cfi)iEI is a fanily (resp. countable

family) of functionoids whose supremam £ = V £; exists,
i€I
then supp(f) < V supp(£;) ; moreover, if f. >0 and
i€I
£t & REB, then I (f;) =0 =>I(f) =0 if ( isa

positive normal mcasure (resp. positive 6 -measure).

Proof: .l. That is non void follows from [\A(O) = 0.

N,
That '\C/Iai €Ny if a; € N G € I) and that b & Ny
i€ .

if b <a & N, Dboth follow directly from (2.1.18).

2. Assume I\TP is complete and let ‘n be its

maximal element, n = \/ib /& N}UL Y E N, . Then u(b) =0
J : '
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if and only if b <n and [0#£b < a _ /,{(b);fojﬁ and

only if aAn = 0. EHence if (ai)iEI is a disjoint
family of elements in B, writing b, = a; A\ (a; A n), webave

b, A b,j =0 (i#3), a.i/\n/\'bi- 0,
K@) = plag An) + u(p,) = ploy ),
at most countably many bi are # 0.
It follows that i (\/i ai) = (\/i (bi\/(ai/\ n))) =

. 5 o ‘
Zi H(bi) = zi }““ai) » 2nd U 1s normal. The converse

is contained in .1. .

3. If supp(f) € X\ » the relations

0L ¢

I/\

15 Xsuon(e) > Tuoupp(ey = i (supp(£))

show that (£) = 0, since I, preserves order,

},L

o8 being positive. Conversely, writing
(ot irE
8 = #ET, 503D,
the relations

- a_ = 4 X
agNagg =0, \ supp(2) o_<_: L)Zansf,\ans £

yield (if f£#0, otherwise there's nothing to prove):

0 < M(supp(f)) = En [kl(&n) = ZnIJ{*( Xa ) =
, n

a+l o fifh S n+l
. zn p-:-‘s (n+l I ) E n mIr\L(f) ]

so that if If‘ (f) = 0, then supp(f) € NF .
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+4. The relation among the supports is obvious from
(2.1.16); making use of .3. and .l., it implies the subsequent

statement.

If }L is a bounded positive measure on a complete
boolean ring B ( so that R#B = bdd 5(By _rg;» B) is

conditionally complete (cf. (2.1.16))), and if I*‘ is

completely additive in the sense that

£, £; € R#B Z |
(2.1.19) £, £, =0 (143) T => I, (2) = 7 62,

_ | f iCT
NN ] 1€
i€l

for any index set I then using the relations
\ g B
Y ; T N )
\/i Aa /(V a £ :L\(a-) & .LIL\( Aa) )
%1 is easily proved to be normal. TFor the converse, suppose
that FL is normal: then in particular, (i is a J-measure

i
then supp(fi)/\ supp(fj) =0 (1 #3),

and IF{ is Daniell. Let £, , £ be as in (2.1.19). Sinee

0£ L Tule) £ Ly Tyl Xgyppce, ) = L5 CHEN peCoupnie, )

>
= i £ w(supn(£,)) = Ll 5V supp(£,)) < o ;
consequently the set J = 2i/’I (f-) 7'0} is at most

counuable, and by (2.1.17 .4.) we obtain s ( \V fi) = 0 and
& ACT~d

NEREPIENCHEE NAVEREE NVEREE RN
icT ics i€J i€yJ :LEI-J
\/

£: & N i) = T W 2,)
y 1 AT



Thus If& is completely additive, and we have provegq

(2.1.20) Theorem. Under the canonical isomorphism

Vi(B) & (R#B)*, there arises (if B

is a conplete

L;(B) of normal measures and the completely additive

continuous linear functionals (= linear

of positive such).

Remark: That Vl(B) is complete in its norm |

comdinations

"

is obvious from the fact that it's a dual Space. That

Ll(B) and Wi(B) are complete (i.e., ¢
of Vi(B)) when B ig complete, resp.
can be proved directly, vut follows triv

results of the next section.

losed Subspaces
5;complete,

ially from the

z2S

rmy

et




P

n 26

2.2 [TIwo canonical projections

For each G-ring B, we shall produce a projectién
T(B): Vl(B)-—19~Wl(B) , and for each complete boolean ring,
a projection Wl(B)BLELJu(B). These projections will be
uniquely determined by a few simple requiremeﬁts in terms
of which the reader will have no difficulty in proving
that T and R are natural transformations between the
contravariant functors _

v
s > B > normed vector lattices

and W
S

> normed vectvor lattices ,

and between

. L " - - .
Y > 3 >normed vector lattices

L
1 PR
Y —= normed vector lattices ,

and

respectively. The resulis and methods of this section

are directly inspired by 10 .
Let B be a complete boolean ring. Define

E, = /b/b & 3, B, hasastrictly positive g-measure]
(2.2.1) 2 b

E Eb./ b € B, 3, has a strictly positive normal measure}

‘(here B_, as usual, denotes the principal ideal (a/ aﬁb}
in B genecrated by b, and a measure /Lt on a ring A

. is strictly positive if

(2.2.2) a 0= t.u(a) 0 ).

R

i e e Y- A

A



That a stricfly positive £ -measure is normal (which
proves the definition, in a manner of speaking) follows

oot (24117 24

(2.2.3) Lenma. E; is a §=-ideal in B. Proof:

If b <{aE E;, the restriction to B, (_ B, of
any strictly positive normal measure on B, is a strictly

positive normal measure on B . If a € Eg (k=1,2,...) ,
let by = akA\/ (a /\ak) Then

<8

bi/\ba = O (l% j) k] bk .<_ ak , and

N
a, = Io}
1 K gy K

bt
I

Letting flk be a strictly positive measure on Bb y 4t
k
is readily checked that the formula

o)
3 ‘J |_\a/\ D'I—
a) = a < a
pe = 2 (@< Vi 3
v ad 1: l
defines a strictly positivec ¢ -measure on tne principal ideal

generated by \/k 2, » This completes the proof,

The inclusion E, (C 3 defines a restriction map

f: Wl(B) —> (EB) , waich is obviously a bounded, order-

preserving linear transformation of norm < 1.
(2.2.4) Terma. ZEBack normal measure on B is uniquely
dttermined by its restriciion to EB' Proof:

If }( and )\ are normal measures on B, and if their
restrictions to Z; are identical, the restriction of their

difference fA -,A to IEB is identically zero.

P

e v g e

o

fp——-.

e e v e p————

L e A o =
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Let e = \/ {b/’b € Ey } . Every normal measurec on B
vanishes outside e (i.e., on somas disjoint from e ). To
prove this, let 'Fk by a positive normal measure on B;
let z:m,,,l be the maximal element in the complete ideal Nﬁl 3
and let b.,L - 1A_n,L (1 is the unit in the complete
boolean ring B) . The restriction of - to an is
strictly positive, hence b IGZ E, , hence ‘::t..I < e,
and so if x/\ e = 0, then x/'\b.ML = 0 and - f'l(x) = 0.
For an arbitrary normal measure, an elementary argument

with positive and negative variations establishes the result.

Now fk-}\ (returning to the proof of the lcmuwa) being
normal, vanishes on somas disjoint from e . On the other
hand, being normal and vanisaing 6n 33 it vanishes also
on the principal ideal generated by e, and therefore

vanishes on all of B, i.e., L1=,k

As a converse result, we have

(2.2.5) Lemma. ZEvery element of Wl(EB) is the
restriction of a normal mcasure on B. Froof:

If u is & positive J-measure on I, 1ts boundedness
assures the exisience of & soma b & Ep outside which it
vanishes. So exterd ju by zero to all of B, i.e.,

define %1 on 3B Dby the formula
f.t(a) = u(aA D) (a € B) .

That ﬁ_ is a normal measure-on B follows from the facts

1
i

S T 4 T P
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that the projection B —>B, is a complete boolean
nomomorphism and that the restriétion of M to Bb is
(by default) a normal measure on By (since the existence
on Bb of some strictly positive normal measure ensures
that each disjoint family’of non null subsomas of Db is
at most countable). That the restriction of ;ﬁ to EB

is fi is clear.

We are now in a position to prove the first main result

of this section, in which B is assumed to be complete.

(2.2.6) Theorem. There is a linear transformation

R: Wl(B) —_— WlCB) having the properties

ol- R =R;

2. R(@) = p iI7 e is normal;

Be 05 fx == 0¢g R(x ) < pt

These characterise R uniguely, and, unless R = O,

"R is bounded with norm 1., ZProof:

Uniqueness. Any projection (condition .l.) is uniquely

determined by its range (condition .2.) and nullspace; by
means of the three conditions, we show that. the nullspace

of R nmust be such that its positive elements (which of
cousse determine it completely) are those &5 -measures fi

for which 0 < A < Mo A normal, icplies A = O. Indeed,
it f is a Gfmeasure (positive) for which the implication
holds, the fact that R(#&) is normal (.2, and .1l.)
together with the fact that 0 < R(} ) £ 4 shows R(f) = 0.

On the other hand, if }¢ is in the kernel of R and is positive,

et T ——

R o .

SRR ——
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and if 0 < )\ffu- y Wwith A normal, the relations
o_{)\-R(l){_R(/u)-'o

show that k = 0 . This proves the uniqueness.

Boundedness. If R # O, condition .3. assures that
R is bounded with norm at most 1, and condition .l.

assures that the norm is at least 1.

Existence. By (2.2.4) and (2.2.5), the composite

1(5) ————AW (B) :'rl(EB)

IGS""

is an isomorphism g. Define R to be the composite

-1

W, (B) ~ L (3) - W, (B)

i w ___,rj

Since fe+g =g, we nave

-l - - - =
R2 = g-)ﬂj ‘ofogc::: l-f = gtﬁs loﬁ.ﬁ l.f = g-ﬁ‘ 1of = R‘

Reg = g8 Tz = g5 ed = g,

which estaoplish conditions .l. and .2., respectively. That

R sends positive measures to positive measures follows from

' the evident fact that £, z, and # do; finally, if U =0,
that R(}{)gg }& follows from the fact that f(}&) vanishes
outside some soma 'b - E5 for which R(},)(a) - /A(a/\b J 5

and the last number is no% greater than f (a) 4 qed.

Remark: The proof could equally well have been accomplished
using linear functionals in place of measures; as an indication,

we prove the next theorem by means of then.

- g g i AR
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(2.2.7) Theorem. If B is a S-ring, there is a

linear transformation T: Vl(B) ﬁvl(B-) having the properties

d. T e
e T(Fl) = M ift M is a G&-measure;.
*Je ogp =.‘~0§.T(}quN .

These characterise T uniquely, and, uniess T=20,

_T is bounded with norm 1. Proof:

The uniqueness and norm arguments are negligeable
variations of the correébonding parts of the proof of
(2.2.60, and will therefore be omitted. For the existence
proof, observe that (2.1.7) and (2.1.14) allow us %o
work in ('.IR; B)*; in other words, we shall produce a
linear transformation T: (R=ZB)* —> (R#ZB)* waich is
a projection, leaves & functional alone iff it is Daniell,
and, together with IdGE&ED* - T, sends positive functionals
to positive functionals. The arguments here more closely
resemble those of [10] than those used in the proof

of (2.2.6).

Let f be a positive continuous linear functional on

R#B. Define two classes of sequences by

() = Hfpdpa1, 2, ... /08T STy s £ =V £

L(f) = i(gn)n=l,2, .../oi‘ gn ] ann = fi ’

where by Zn 8y is meant the supreneum over all partial sums.

Yext, define functions between these classes as follows:

- —

e At

e T e 1o g

o e e, W T

L.



Fl: X(f) ——-—>..TL(f)
F2: IL(f) —> X(f)

F4:
Fe: X(f) —> K(rf)
are defined by

Fl((fn)n) = (gn)n » Where

7 ((eg)y) = (2), , whews
IF;((hn)n) o ((£n>n ’ (gn)n) ’
B, () 5 (8),) = (a)_

Fo((£)) = (x5,

If F

is a positive lincar functional in (IR#B)*,

- .
f\_)_? ok

5 K(f +g) — K(£) = XK(g)
K(f) x X(g) —> K(f +g)

232
(rz 0)
£ n=1
gn'sﬁfl:r a1
n n-1 ?
>
£f_ = g 3
n e | k

where £, = f/\hn, gn'hn_fn 3

where hn

define

P(F)(£) = glb $1imn?(fn) f CE.), € K}

D (F)(£) = glo§ ) Fg)/ (8), € T() ]

Simple calculations with Fl and

(0<f € R#B).

F, show that T(F) (L)

and T'(F)(f) are the same. Using F3 and F, one

obtains

T(F)(E + g) = T(F)(L) + T(F)(a) ,

whea f and g

are both positive. Finally, oy use of F5 s 1t can dbe seen

that T(F)(zf) = 2 T(F)(f) (0<Lr &€ R, f positive).

It being clear frocx the definition of T(F)

(2.2.8)

that

O<F € (R#B)*, 0<f € R#B => 0<T(F)(£)X F(L) ,

it follows that T(F) has a unique extension to a (continuous)




positive l_inear functional on E;B. It is also clear
from the definition of T(F) that T(F) = F if and only
if F 4is Daniell (for positive F) .

The same argument, essentially, that proves T(F) is

positive hoﬁogeneous (using F5) proves that T is

positive homogeneous, as a permutation of the positive
elements in (R#B)*. ©Next, let F and G be two
positive elements of (RZB)*; we show T(F#C) = T(F) + 17(G)
by proving that, for each positive élement £.& R#B,
T(F+G)(£) = T(F)(£) + T(G)(£f) . Accordingly, let such

a functionoid f Dbe given, as well as a real number

£»0. Choose (£ ), & X(£f) so that
lim (F+G)(f ) < 2(F+E)(L) » € .
‘It follows that

T(F)(£) + T(G)(L) < lim F(L)) + lim G(Lf)) =
= lim (F+G)(f ) = T(F+&)() + © ,

and, the inequality between the extremes above being

available for eaca © >0, Wwe have
T(F)(£) + T(&) (=) = P(EF+C)(L) .

Conversely, given ¢ >0 once again, let (fn)n - (gn)n € K(£)

be two sequences for waich |

lim F(£,) < T(EX(E) +

lim, G(g,) < T(G)(£) +

| oo
-
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Then, setting h = f A g, , (b ), € K(f) and

T(F+G)(L) < lim (F+G)(h,) = lim F(h ) + lim, G(h)) <

< limy F(£) + limy G(g,) S T(EI(E) + 2(6)(L) + EE

so that T(Fﬂ-G)(f) < T(EI(E) + T(G)(L) + ﬁ. , for each &

together with the previous inequality; this shows
T(F+G)(£) » T(F)(£) + T(G)(L)

for each positive £ and consequenily, T(F+G) = T(F) +7(G).

Thus T has a unigue extension to a (continuous, but that's
irrelevant) positive linear transformation from (IJRZB)*
to itself, and T(F) = © 4if and orly if F 4is Daniell -- this
was remarked before Ifor positive 7, aad it follows by
linearity now for all ' F: this takes care of condition .2.
in Theoren (2.2.7), waile (2.2.8) takes care of condition
oBe o t remains cniy vo prove that T 1is a projection.

To this end, les O0<f € RZB, let 0<F E (RZB)*,
and let a real number : > O be given. If (fn)n € IL(L)

satisfies

2 TENEL) < TEENE) + £,
choose cgnm)m - ]I.(fn) (n=1, 2, «se) such thét

) € T(FX(L) + -gri—l (=1, 2, ...).

=5}
Gy

2o 5

nm

Then



e ¢ @ p
TENE) £ L 2 Flepy) £ ngl (2(E)(2y) + Sop) -
° BE
= ngl T(F)(£,) + ngl--e-m < TTEN(L) + S5

Since the inequality between the extremes above holds for
all & , MWWRI(L) < TE(F)(f); the converse iﬁequality
follows from (2.2.8), and so T(F)(£) = TECF)(f) , for
positive, hence for all, functionoids f € R#B.
Consequently, Te(F) = T(F) for positive, hence for all,
linear functionals F € (R#B)*, and T is a projection.

This completes the proof of (2.2.7).

(2.2.9) Corollary. If B is a «-ring (resp. a
complete boolean ring), tren Wi(B) (respe. Ll(B)) is

complete in its norm { ﬁl induced from Vl(B)f

Proof: V,(B) = R#2)" is obviously complete,
and Wl(B) (resp. Ll(B}) occurs as the nullspace of
the continuous linear transformation Id-T (resp. Id=R)
hance is a closed subspace of Vl(B) and is therefore

- complete (resp. is a closed subspace of Wl(B) and is

therefore completq.
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2.3 DNon finite measures

The measures to be considered from now on need not be
finite, as they were.in the preceding sections; precisely,
a measure on a boolean ring B is an extended-real-valued
function fA: B—> R satisfying
5.3 A (a\/b) + lu(a/\ p) = u(a) + u(o),

and }A(O) = 0.
It is assumed that each side of the first equation is
always defined, i.e., that fi omits at least one of the

infinite values +® . Defining the positive and negative

variations }L+ and ft-. of ;4 by the formulae occurring

on the right sides of (2.1.2) and_(2.l.5), respectively, at

least one of these variatvions is a finite measure, and conversely,
if -j and A are positive nmeasures, one oI which is finite,

then W - \ (defined dy (7}-;k)(a) = 7(&) - A(a)) is

a IMeasure.

A measure %l on a J-ring is a S-nzasure if the implication

(2.3.2) agNag =0 (LA = u (W ap= 2y play)
-

is valid for all countable families of somas (it is intended
that the series converge absolutely, perhaps to +m ). If
P is a' §-measure, so are F_+ and ft"; conversely, the
difference of two positive S-measures, one of which is finite,
is demonstrably a §-measu£e. The details will be left to
the reader. A measure on a complete boolean ring is normzl
if the implication (2.3.2) is valid for any family of somas;

similar remarks about the variations are valid, as for 5 -measures.

S
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The measures with which we deal will, for the most part,
be either finite or positive, since any measure is a
difference of such and our results will be reasonably

additive.

For any positive measure f.l ona booleanring B , define

Ny = pTH0) = {v/pE B, p@® = 0j,
Fo = {878 €3, p@< +of.

N}A is clearly an ideal in Fp , which is, in‘turn, an
ideal in B. loreover, the restriction of & to F}(_(
is a finite measure there, hence defines a positive

linegr functional i{u on R# 1:“ (cf. Remarksfollowing

(1.10.12) or (1.6.13)), in terms of which pseudonorms

i np ¥ can be defined on R#TF, (l<p & R) by the
9 fL /

formula

.lp i P‘\

-1
Bed, o= @ IR

in which |f|®? 4is intended to mean the step function

n e §

iZl Irilp#ai if £ = igl ri#ai (ai/\aa. = 0, if3).

The completion of IR#F, in the pseudonorm || Hp x is
b ;

called Lp(ju“) and is, of course, Banach, indeed, is an
Lp-space in the sensc of EBohnen’plust, Duxe lMath. J. &
(1940), pp. 627-640] « This construction has a modicum of
naturality, which will be described but not stressed.
Namely, if ¢ & B(A, B) and i 1is a measure on B, then

!L\-d is a measure on A, ¢ sends somas in F

oo
}Ll"ﬁf to I



23%

and R#{L: IR#F( —> R#F induces an order-preserving

s oy

isometry from Lp( }'(-gf) to I.P(;u) « (It is temptirz to
write Lm(/u) for one of the spaces IR;;FIU 5 R#3 4

IRE(E/‘.U /Nf")' or IR#Z (B/NP) ; this temptation is, however,

incompatible with the desire to assert that ('Ll(/q_‘ b - Lco()_t

Thorp [30] gives examples to this effect; we shall give

the right definition.)

In the event that /l’( is a positive measure on a g-ring

B whose restriction to each principal ideal is a & -measure

' there, there is a unique & -measure 6/.& on ¢B satisfying
] l\ t‘
(gpd(o ) = ulo ) (v €B),

where JB is the 0 -rinzg associated to B by the left
adjoint to the inclusion functor § —= ¢ and is thought
of as containing B. Indeed, each eiement of 5B is an
at most counﬁable union of elements of B, and :-?u is
described by ,

_ (:)‘/Lt)(b) = inf (“ Zi /u(bi)/ (bi)i=1,2, QB,. \/ibi = b

Since the ( -rings F, and F, stand in the relation

’Ll

iR

we have an isomorphism § Fﬁ JF e 5
norm~density argument that LP(/L«) = Lp(a‘/u) . Thus, the

and it follows by a

behavior of such measures which, locally, are &§ -measures

is already revealed in the study of f§-measures.

Lo
/

p——— -
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It !,k is a positive O-measure on a S=-ring B, define

E#n SFF\ 4
Bu= LB, ,

g ¥
N, = i(n/neisFL ,n/\bENH for all beEF}.
Then, using (1.10.8) and (1.10.10), we obtain

BE /N =B /K,
B, = BB, .
ﬁﬁnfn/neBP,n/\b€N}& forall,bEE}A} "

pCE, /N,) = 4(E /T .

Define Ly (u) = 24ds(Bp g, s S(B/F D) = JR;’;{.-?(EF/NIL\) :
the norm here will herccforth be denofed by iim + That

this is the right definition, in the sense that In* =L,
will be proved in §2.5, dy means of the Radon-Nikodym

theorem and an elenentary direct and iaverse limit argument.
The Radon-Nikodym theorem needs somc xmachinery, however,

and it is this we now constvruct.

Let (L be a positive J-measure on a S=-ring B.
|

A § -measure ,\ on B is called !,.-;{—norr::al if

e i N{u C N, ( A is absoiutely continuous with

respect o U , A G _,u);

2. there is a soma e & E, such that a £ N,
if aAe=0 (e is a carrier of A ) ;

A4. A and },x are comparable over e.
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Notice that }. is in fact a finite measure by virtue

of .2. and .3. . To define comparability, we first define

a Hahn decomposition of e for ,A with respect tO'ﬁA 2
this consists of a real number t and disjoint somas

e;, e; whose union is e and which satisfy

a

IN

el = Ma) <t ma

a

1A

ef == ) Z % j(a) .

ke

.) and fL are comparable over e if the parameters +

involved in the available Hahn decompositions of e for

;X with respect to rpc are dense in the space of real numbers.

If condition .5. in She above definition is replaced by

3a. B C =B .

we say A\ is almoss L=rnormal. 3By nmeans of the fundamental

theorem of calculus, whica characterisecs The positive almost
}L-normal measures, we obtain a descripiion of Ll(fi) as
‘a special version of the Radon-Nikodym theorem. We need one

more se¢t of definitions, however, before we can proceed.

If B is a §-ring, let 3° = B - 0} be the set of

non null somas of Bj; for b & B° and £ 2 SCBR—"EO}’ B),

define infb(f) mf(b) and supb(f) = Mf(b) thus:

na(b) = sup x/ X, <£Xy » TERY

(2.3.3)

oql =
inf v/ Xy, 2fXy » TER}

4

Mf(b)

(the null set convention is sup(d) = =, inf(Z) = +»).
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In view of the fact that rxb <f )(b if and only

if -r )(b Z -1 Xb » W& See at once that

(2.3.4)  mo(b) = ~H_, (b) | (b € 8°),

As functions from B° to R » Wy and Mf have

the following properties:

(2.3.5) a<b = mf(b) fmf(a) fo(a.) < Mf(b) :

(2.3.6) b
(2.3.7) »©
(2.3.8) M,

= \/ bi = mf(b) = infi mf(bi), Mf(b) = supy Mi‘(bi>;

i€l

= j_/E\I by => mf(b) = supy mf(bi), Ix-If(b). = inf, Mf(bi);

(b) = sup ?mﬂ(a)/o;fag b} ;

(2.3.9)  m.(b) = inf (M.(2)/0#a <b} ;

(2:3.,10) £
(2:3ell) £
(2.%.12) :
(2.3.13) ¢
(2.3.14) £

>0 (———,,—“>mf(b);_>0 for all b & B ;

= 0 &= mf(b) =0 (all ») < Mf(b) = 0 (all b) ;

is bounded & mf(supp(f)) and 3-.-Ef(supp(i‘)) are

finite; moreover #f¥ =

Yo = max !in.(supp 1), |M(supp £)]%;

£

n
2
kY

i

N =\ mf('b) :'Lni‘i mi_._(b) :

V £, => .(b)

i€1 * =

sup, M. (B)
i

Eroof: Ovserve %o begin with that na(b) X, < £ X, if

mf(b) is finite, while if mi,(b) = -, there is still a

strong sense in which the above inequality is meaningful.

Similarly for hﬁ¥(‘o) » Ve shall, for the most part, therefore,

fail to distinguish the finite from the infinite cases in

the proofs of these properties.
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e~

If a<b, then a = bAa and so me(0) X, = m (b)xb/\a
o= mf(b) Xb Xa <f Xb I = f Xa : hence f(b) < mf(a) . Now,
using (2.3.4), Mf(a) --m_f(a) SH-m_r(b) = Mﬁ(b). Finally,
mf(a) }(a L7 Xa < M Xa shows mf(a) _<_-Mf(a) , and completes
the proof of (2.3.5). _

To prove (2.%.6), observe that Xﬁ. £ xbi; for all i
if and only if = Xb >£ Kb : this proves the second identity,
and the first is now a consequence of (2.5.4).

A similar argument proves (263:7) 6

To rpove (2.%.8), notice first that the sup is <-mf(b),

‘according to (2.3%.5). If the sup differs from +o (otherwise
we're through), call it S. We distinguish threé cases.

i) O0#b <supp{f). Then b has non null intersection
with some soma £( T, n+l] - [0}) = a, (n & /) and
mf(an/\b) >n for such a soma: nence S ¥ -®. If S;émf(B),

let ¢ = Mf(b) - 8 >0, and for each integer n, define

WX g
b, = £([M.(b) =27% M (2)] - (0}) kit = 1)«

If n >—g'¢_ , then bn/\b # 0 4 and so mf(b/\bn) sz(bn) >
> I:*If(b) -1 , Wwhich proves the sup is Zl‘éf(‘o) and
establishes the formula.
ii) 0#b, b/ supp(f) = 0. Then mf(b)= O=I:;If(b) .
iii) b= ¢c¢Va&, 0#c < supp(f), d4#0=4a/ \supp(f) . This
case follows from the previous cases by use of (2.3.6).
This concludes the proof of (2.5.8).
(2.3.9) follows from (2.%.8) by use of (2B ),

(2.3.10, 11, and 12) all follww from the easily verified

T

i R
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facts that mf('b) = mxb £(B) Mi‘(b) - be‘f(b) , and that

K_-_ - L .

f, qua ¢S-morphism from BJR-‘{O“; to B, vanishes on
each Borel set disjoint from C - {-, 0, +®%y (C is a
closed connected set in 1=R) if and only if mf(supp(f))
and M (supp(f)) are both in C. (This fact can also be
used to advantage in the proof of (2.3.8).)

To prove (2.3.13), observe, as for (2.%.6), that
2 Xy < £X, 4ff for each i, X, <X, .

By an application of (2.3.4), (2.3.14) follows from (2.%.13).
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2.4 The Fundamental Theorem

of Integral Calculus

This section is almost entirely devoted to the proof of a
result embracing the. mean value theorem, the Radon-Nikodym
theorem, the chain rule, and the change-of-variables formula.
In what follows, R" = '11:_/ 0Lt € JR} deno"aeé the positive
reals. The § -ring IBR.,. of course inherits from IBIR-?{O}
a costructure involving addition, multiplication, lattice, and

" scalar operations in a fairly evident manner.

(2.4.1) Theorem. Let ‘u be a positive G -measure on a
§-ring B. PFor each £ & 5(Bo4+, E,), there is a positive
e i

g-measure ‘C'Lf on B, uniqualy devermined by the properties: .

. . ) ;
0. Mg 1S & yg-measure,
" i“i'(a) =0 if aAsuppf =0 or ag& N,u .
and 2. if a & F,  and O # a <supp(f) , then (Mean Value)
' ~
.(a i1(m Lo I & 3.’7“ a .
Iﬂl(c».) },\(u) = /'L(f(a) — '-ll( )},l (a‘)
-~
In addition, every measure U is almost py~normal, and
i, [
(Radon-Nikodym) every almost ii-normal positive measure on B
. . s I ) ﬂf LI £ i
is obtained in this way. (i, = 0 iff supp(L) € N . The

§ almost M—normal% di
| positive measures

~ —
funetion e (B § ) =2
additive and positive -ozogeneous, and satisfies the chain
TN i A
rule f = ay = L), e Zinally (Change of Variables
(/. f)g M(£g) Yagls J 8 )
~r

the passage from . to is nagsural with respect to

g-morphisms: if ¢ & 5(A, B) and £ € C(Br+ Ef“w,)’
("‘\_' o
then (fu'd)f = M(ge1) g . Proof:

The proof must be preceded by a lemma.

g ———

wr e———




(2.4.2) Lemma. If f is a bounded positive functionoid

on EP’ with supp(f) € Ff’k , then the conditions

0. g is a G-measure on B
1. ga) = 0 if aAsupp(f) = 0 or a & Ny
2. O0#a £ supp(f) =—> mf(a) (Lt(a) < g(a) L Eﬁf(a) /u(a)

are equivalent to the statement

3. 4(a) = I (£X,) forall a € B.

f,t
Proof: If #(a) is defined by .3., the factsthat
g(a) = I}_L.(f Xa) . wher.:e f"(b) = H(b/\supp.(f)) , and
that If.l' is Daniell (,LL' being a finite §-measure)
establish e0e; ol. is obvious; and .2. is due to the fact
§!

that I preserves the inequalities

me(a) X, < £X, < Me(a) X -

For the converse, su first that f 1is a step functionoid,

i®]
‘g
(o}
0]
)

] .

f = Zi T, }{a (the a. 's pairwise disjoint). Then
4 i
mf(a) = M.(a) = », wkenever

0
and .2. indicate trat d(a) = 2. 4

F
)
0

'—.I-

S
I

™~

..J-
s
=

-
]
»

'_h

h

n

£

I{vh(f X,) for all a & 3. Now, if £ is arbitrary, let

¢ >0 Dbve provided, and choose an integer N so that,

X e 1 ::r ’
when [ =4Ei® . 0<od - . TFor k=1, «e., N,

N 2 (supp(£))
let
Then a, = supp(fk) and if Ofa< ay Oémi.k(a) - 1:1‘.1,(51).4<~ .

For any b < supp(f) (b#0), let b _=DdbAa, . Then
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: <

whenever bk#O s, 8nd SO DY «2e,: bk;fo =
0 < B(b) = o) (lby) £ Eulby)

summing over k and using the fact that (( and # are

measures, we obtain
N N

o< b) - b L = b,.) - b i((b
< 4(v) 121 RORYCPEIPACICREENCRICRY

le€e,

0< db) - I (X, 2 m(a )X, )<

©
]l
'_J
1]
"
Molea
L ]

On the other hand, the fact thed

. - & '\r
0S £X, = Xy L mlad X, £ Xy
implies that

0 T X)) - (X

f_:_'IiuCC KD) = Df*(::’)“i % ]

and comsequently | #(d) - I, (£ X J&< 5. o Since £ was

arbitrary, thls proves the lamma.

To prove the uniqueness statement in the taeorem, let
f be any positive functionoid, and let b C B. ‘here
ay (k=1, 2, ...) are any pairwise disjoint somas 1n F# whose
union is supp(f) ,and Db, = £f((n~1, n]) (=1, 2, eee) s

define

i g g P g

———

o s - BT o
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\

ank-bn/\ak, fnk-fxank, .bnk“b/\ank-

Since g‘f is supposedly a ¢&-measure vanishing on somas

disjoint from supp(f), and since supp(f) = Vo x Bak
¥
() g = Fp@Asupp(EN = 2y Foplopy) -

lloreozer, since a € ¥, , we have o1 € F‘LL , and so,

whenever b . # 0, the hypothesis in .2. is fulfilled and
mfnk(bnk) (o) = maldpy) (1) £ hellpy) £

By Lemma (2.4.2), therefore, uh.(b_,.) = I, (£Xy. )3
» ? ¥ } by nk {U bnk ’
'in.(b) is then determined by (*), and the proof of uniqueness

is concluded.
We need another lemnz To prove the existence statement.
(2e44%3)  Lemma. I 5 1€ is a farily of positive
J.

39
. §-measures, if i, § & I => 3 k€ I such that

<A =45,

and if the extended real vaiuved function g is defined by
g(a) = sup; g.(a), E

then g 1is a J-measure. Proof:

©
Suppose a = \/ bi where bi/\bj =0 for i#£j.

Then, since dk(a) Zl;i (b;) £ Zid(bi) for each k & I,

we have




ga) < 2,40

It g(a) is finite'(otherwise there's nothing to prove),
let an integer n and a real number ¢ >0 Dbe given.

Choose ki € I so that gfki(bi) Zd'(bi) - g (1< S ) 5

then find k € I so that S < By (l<icn). Ve see
: i

n n n
n | z
izl (v, < igl (8 (0;) + £)c £+ L Aoy <

@
S Er 2 40D = £ 2@ < € i)

This being true for &1l ¢ and n, Wwe see zi d(bi) < g(a) ,

which finishes the proof.

For the existence »roof in Theorem (2.4.1), let £,
a positive functionoid, be given. As in the uniqueness proof,

find pairwise disjoint somas &a. in F[““ whose union is

3
supp(f) , for which I, = fXa is bounded. Lemma (2.4.2)
i
provides measures g, = i % : define uy = 185 (the sup
over all finite sums) =-- this is a &-measure by (2.4.3)

and vanishes wherever each ﬁi vanishes, so that it enjoys
properties .l. and .2. of (2.4.1). To verify .3., suppose

0#b < supp(£f) has Fu(‘m) finite. 3By (2.4.2) and (2.3.5),

me(0) ula;AR) € mp(a3/AD) i(a;AD) = mfi(ai/\b),u(ai/\b)

I~

g;(a;Ab) < My (8;AB) p(a;Ab) = Mg(a;Ab) alaz/Ab)
. |

< Mg (d) wla;Ab) (whenever a;Ab # 0);

—

since ¢ (a.AD) = pf.l(‘o) , summation over i yields
i1 _



P
£
£

e

ng(d) p(®) = mp(2) 2" playAD) € L' 8y (b) <

= Z" Mp(0) p(agAD) = Mg () w(b) ,

where E* means summation over those i for which a;/N\b#0.
L o~ * .
Since {uf(b) = z ffi(b) (because gfi(b) = 0 if ai/\b =0),

this completes the existence proof.

Proof that ﬁi‘ is almost u-pormal. That NHQN}K
I

and that supp(f) € E, is a carrier of }'If are

immediate. Next, let b & E, . Then b /\ (bAsupp(£))

is in N~ (C EBE~ , and b/\ supp(f) can be written as
PE™ FE :

a countable union of disjoint somas b; € I, for which

£X, ~ is bounded; consequently b, = FFf , and so b € ng .
i %5

i .
Finally, we prove that U, and « are comparable over

supp(f) . TFor each t & R, cefine

e = £((0, 1), ef = £((t, +®)).

-+

= supp(Z) , e;/\.e; =0, and Ofa< ey

Then e; Ve

ct |

ta(a) & Hp(a) u(a) Siq(el) w(a) £t Hiad

implies |
while O#a < e, implies t (a) £ mf'(e:_:) H(a) < mf(a)p (a)

~

- !Uf(a) « (Jor a =0 there is nothing to prove.)

Proof that evexry alzosy /L\-normal positivé reasure is
obtained. Let A be one, and let (%, eg 5 e;) be a
family of enough Haz= decompositions of a carrier e
of A. For each & R and a fixed countable set T,
dense in 1R, of parameters t among the available Hahn

decompositions, define



+
Sr-/\Zet/te‘I',_t?'r} .
Observe that (r, 8.y e /A8, € m 15 again a family of
S
Hahn decompositions of e for A with respect to Hos that

(33 ™ S,=S8, aad S,<S, if s<r,
s<r &€ R _

and that Sq € Ny ; %o see the last relation, write

Sy, @as a union of countadbly many somas st € Fll‘“" , notice
that A(S*) <t p(s*) for eacaXs € T and each i ,
deduce that ST € N, , and conclude therefore thab So €N, .
Replacing e by e/\S, and each S, by S /(S A S5)

if necessary, we may assumg SO = 0x i.e.,

0.

@ A s,

r>0

But it follows from (%) and (&) that there is a unique

s, §

G-morphism f£: By —» 3 witk £((0, r]) = S (cf. Gotz

T
[ 11, §2.273). Since supp(f) = \/:' S, Se, £ € i (Bp+ » E,) .

e A ) " N . .
To see that W, = A, we check that )\ satisfies the

| -

mean value theoren for ' 2. From the definitions of

m and M, we immediately obtain

sup ‘r/8,/\a = 0} =suw jr/ag e A S, ¢

m,(a)

inf ivr/a < 8.7
l\s:::(&) a.:lf LI‘/ = SI' [

wnenever OF a<supp(f); from these formulae, under the

hypotneses of (2.4.1 .2.), we immediately obtain
Aa) Zmpa) (@), @) £iig(a) p(a)

and so .I:'J-& = )\ , Dby the uniqueness.




242

e

If a<b, then a = bAa gnd so mf(b) X, = mf(b) Xb/\a
mf(b) Xb }(a <f Xb Xa = f Xa ; hence mf(b) o mf(a.) . Now,
using (2.3.4), M (a) =-m_f(a) 5.-m_f(b) = Mﬁ(b). Finally,

mf(a) Xa <f Xa < Mf Xa shows mf(
the proof of (2.3.5).

To prove (2.%.6), ovbserve that

if and only if Xb =& Ib
and the first is now a consequence
A similar argument proves (2.3
To rpove (2.%.8), notice first
according to (2.3.5).
we're through), call it S. We dist

i) 04 Then D

If n>=, then bn/\o £ 0 , azd s
Z () = n 7,
establishes the formula.

ii) O0#Dd
supp(£)

case follows from the previous case

iii) bp=e¢cVa, 0£Ac < s

I The sup differs from

and for each integer n,

T v -"':- e e
L‘d,’:-,(D} e . A'llf(o)-, o
which proves the sup is

b/\ suwpp{f) = 0. T

a) flmf(a) , and completes

by Xb > L xb for all i

i 4

this proves the second identity,

of (2.2.4).

7).

that the sup is < Iv’If(b).,
+® (otherwise
cinguish three cases.

has non null intersection

a, (& /) and

nence S # ~w. If S# l'If(B) .
define
o5 (o 22) .

o ma(b/\b, ) Z m.(b, ) >
Z1.(b) and

hen n.(b)=0=1L.(b).
y &#0=d/\supp(s£).
s by use of (2.%3.6).

This

This concludes the proof of (2.%.8).

(2.3.9) follows from (2.%.8) b7 use of

(2.3.10, 11, and 12) all follc

(2.3.4).

w from the easily verified




252

T
then fg = Eirisi_xai and mi‘g(a,i) =T 8= mf(a.i)mg(ai) ; i
likewise for M, and it fodlows that ) F’:fg in this case.

It folldws by an easy limit argument for the general case.

Naturality. L‘et_ £ € 5@+, A), 4 E 54, 3),

and (W a g-measure on B . Since {A-;&" is then a & -measure
on A, and dg(e) € E, whenever e - EP'Jd C 4, it follows

that gf € ¢ (By+» EH> whenever £ &€ § (IBJR‘*' . E(;.-,d) .
’/\J -
Now (Iu'd)f , as a GJ-measure on A, is uniquely charac-

terised by its mean value theorem. Letv a 53 satisf
J nod J

0#a<supp(f). Then ¢(a) & F

F’* )

g(a) < supp(g!-f) , and if

g(a) # 0, the mean value theorem for fﬁﬁ_f asserts
SIS PCICO PR IREICY WS PR CICVINCICVR

Now when ¢g(a)#0, mﬁ.,?(f;'(a}) :_?'mf(a) and I»-'ﬁ.f(p’(a)) < I‘.'If(a) 3
combining these inegualities with The mean value inegualities

above for ;:tp, f(,d(a)} shows tha
! .

¢k

Rg.s - enjorys the mean

o]
cl
(@]

value inequalities appropriat (ﬁfhzjf , Wwahich proves

they are the same. '
The proof is ended, and some general remarxs are called for.
1) It is customary %to write

!;:i;.(a) = ()fdri,-. . ;ef(supp(f)) = <):‘L‘d/.c s

a

A functionoid ‘f is intezrable (more precisely, ,U-integrable)

if (it is in (B+, E,u) and) Si‘d}u is finite, waich is

. ~ : - 3 - - - - - 3
the case if and only if /uf is finite (in addition to being
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e

almost }J-normal), i.e., if and only if j&f is fﬁ—normal.

s _ : ot o
If £ & G(Bm-zo}’ u{H) and both f . and £~ are

P-integrable (equivalently, if I|f 1 is fﬁ-integrable),

f 1is absolutelm ﬂj-integrablg, and we write Nr = Mg+ 'Juf- )
S I’dﬁ = gf.(a) , etc. From the additivity statement in
£ _

the theorem and the description of the kernel of Elf I & v
follows that the P—normal measures (viewed as a subspace

of Wl(B)) and the gquotient Ll(Pt, B), of the space of
absolutely ﬁ;-integrable'functionoids in G-CBEl-ioﬁ‘.%“)
by the subspace consisting of those whose support is in N, ,
are isomorphic as partially ordered linear spacesj this
isomorphism is converted into an isometry by defining

HEHy = Bfghy for £E€I,(p, 3) .

2) Using the easily verifiadble fact that, when p: B —>C
is an S-epimorphism in S(B8, C) , each s-measure on B, Mo

-

.for which ker(p) C N, is of the form A-p for a unique

§-measure )\ on C, we show the three spaces
T'r:L(EP\/NM)s L:‘.(fu‘)’ Ll(lf“"s 3)
[ 1

are all canonically isomorphic with Ll(}x/Nﬁ , B/NV) ,
where, if p is the canonical projection B —“e>B/NP_,
FL/NM. is the unique J-measure on B/NV whose composition
with p is W . rom the naturality, we have an isonmetry
of Ll( r-\, B) 'intO Ll()_u/N!“ R B/N‘M) , and since IBJR-?O}’
being a retract of IBR , dis S-projective {ofe €1.5.0))

it follows that every absolutely integrable functionoid in




M
.\
=

\

I’l(,'“' /Nf' " B/N{u) is obtained. Next, we show that each

finite & -measure 1 on EfJQ9‘- is in fact ,u/kr-normal.

(It might be pointed out, in this connection, that F,*—t/Nf\

and FF/NP s likewise E,. /N, and E,x,VNr , are the same.)
Indeed, each principal ideal of Eﬁ/Nh | is complete, for

}x/ﬁp is strictly positive on it, and so any disjoint

family of non null somas can be at most countable. Consequently,

if e 4is.any soma outside of which A s oeing bounded, vanishes,

and if + € R, defining.

e: = \/ ia/a;{_e ’ ,L(a)ét(fl-‘/mﬁ)(a) )' ) e-t. - 'e&.e: ’

{5, e; § e;) is a Hahn decomposition of e for \ with

respect to IL&/l\‘}‘; over e, thsre'fore, \ is comparable

with .V‘/N- 'y and since A vanishes on somas disjoint from

e, )\ is /N, -normal. This proves "-.-‘.f'l(E;_M )= Ll((u/Nf., » B/Ny).

1% is clear from the cdefinition as a completion that L, (/u)

and I, (/N are isomctrically isomorpric, and the
l ! ( & b}
inclusion of RETR . o as step funcvionoids in
. e = s by nr 1r i
Ll(:,u/m« ¥ b/Np )g 5(Bp_.o En /N_.) nmnakes IR#*;“/NF a

dense, isometrically csmocedded subspace. The fact that

Ll(va% ’ B/N} ) is complete in its norm, because W, is,
guarantees that it is the completion of IR#PF ,., 4 i.e.,

is LIQu/NF_), which coapletes the argument. If Lp(ﬁ&, B)
denotes the classes, modulo null functionoids, of functionoids

I for which Iflp is integrable (Iflp is definable in terms

of the operation | P on the absolute Borel space (R, JBE{,O))

~

with the obvious norm, one can prove Lp(f«) = Lp(/" y B), 1<pER.
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3) To require that there be enough Hahn decompositions,
in the definition of (almost) }A;normality is, as one of the
arguments in 2) suggests, merely a technical coﬁvenience:
any ¢ -measure satisfying the first three requirements of
the definition is automatically comparable with p oover
any carrier. That is an irrelevancy of SOrts, in that it
only makes the argument longer. Its proof, of course, is
to divide out by NILt , Obtain Hahn decompositions in the
gquotient, and 1lift them-up arbitrarily to the original
S=-ring, taking care afterwrds vo remove an appbopriate soma
of measure zero. One must work with only a countable number

of decompositions in order To succeed in this progran.

4) If £ 4is a functionoid on a 3-ring 3, many

would be tempted to write

£ = SxdE %)

where 2(x) = £f((-w, x1), and &efine

—

Stap = Sxauaey,
TR

the right hand integral being a 3tieltjes integral over 1R.

Using x to denote also the identity map on EHR , We have
S fdu = SX&(;‘A 'f)

by naturality, and the measure u-f 1is exactly the measure

whose Radon-Nikedym cerivatvive witia respect to Haar measure

is the function w(E( )), so that this variant definition

is compatible (everyone always knew it worked).

e e 4 T R A T e W A
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liore generally, if g is a measuravple function on tae
absolute Borel space (]R,]BJR, O) and IB(g) is the
associated z%‘-morphism from EI{ to itself, write

g[f] = £-B(g). By naturality, we obtain
Ss[f] dy = (z-mg)ap - ( B(e) a(u 1) =
- Gxaqpereme) = §xau(ee™ -, xJW
- § 860 aCu(eC-o, x3M = § ) aln (260,

where the last three integrals are Stieltjes‘type. Tais is
familiar from the operational calculus of e.g. self-adjoint

operators, where one writes g[f] = Sg(x) dE(x) .

5) There is no difficulbty in extending the range of
somas for which the mean value inegualities hold to all
of B% for integrable functionoids as well as for positive

d, of course, that

o
[

~

functionoids in (B4, F.), provi
the product of O with <+ is inverpreted as O. The
whole usefulness of these inequalities, howsver, is with
somas that are: small., oul’ not zero, so far as the measure

is concerned.
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i

lMore generally, if g is a measuravle function on the
absolute Borel space (R,JBJR, 'OI) and IB(g) is the
associated g‘-morphism from IBJR to itself, write

g[f] = £-B(g). By naturality, we obtain
Ss[f] dy = Sf-JB(g) dp = SIB(g) d(pef) =
= GxaqpereBe) = §xa(ulzte™-w, xIW
- (800 atuie-o0, xIM = () aln (3G

where the last three integrals are Stieltjesltype. This is
familiar from the operational calculus of e.g. seclf-adjoint

operators, where one writes g[f] = Sg(x) dB(x) .

5) There is no difficulby in extending the range of
somas for which the mean value inecualities hold to all
of B% for integrable functionoids as well as for positive

functionoids in 3(B—., E,.) , provided, of course, that

[01]

the product of O with +o@ Is inTerpretved as O. The
whole usefulness of these inequalities, however, is with
somas that are:small, Ous not zero, so Ifar as the measure

is concerned.



2.5 The dual of Iy

Until further notice, assumelthat B 1is a complete
boolean ring an@ that the 065-ideal EB. (ef. (2:2.1) and
(2.2.3)) is dense in B, so that (by (1.10.9)) 3 = _ﬂEB.
Define J: R#ZB —> (Ll(B))"' by specifying J(£), for
£ E R#B , to be the continuous linear i‘unctional on I‘l(B)

given by the formula
(2.5.1) TE(LO = T.(8) (p & Ly(E).
Observe that J 1is the same as the composition

R#EB —> (B#B)™™ 2 (V)(3))* —= (Ty(B))"

of the canonical inclusion in the secoand dual, the transpose

of the

Fh
[0

of the isomorphism of (2.1.7), and tae transpos
inclusion, hence is a norm-decreasing, order-preserving,

continuous linear transformation.
(2.5.2) Theorem. J 1is an isometric isomorphism.

Proof: Let £ Dbe a stvep functionoid, say £ = Z. r. X, #0
ety 171 %y

with the a. 's disjoint znd #0 . Then jifll =

i ™
= max. |r.} = Jr.!, say. Since a, # 0, there is a
i - A 1
soma e & E; for which OFe < a;; choose a strictly

positive finite normal measure on the principal ideal Be
and extend it to a2 finite normal measure F\ on B by
defining it to be zero on sbmas disjoint from e. Then
f(ay) = p(e) = fmily and 1I(E(MI] = 1T.()] =

o

= Iry I;,\(atl)l = Irl}iiauill = fifll, Huily , so that
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HT(EO N Z'Hfmn.. Since J is norm-decreasing, we have
BT = iffi, » and J is an isometry on the step
functionoids. They are dense in IR;B y, however, and
so J 1is an isometry. It remains, then, to see that
every linear functional on Ll(B) is obtained, i.e.,

that for each F € (L;(B))* there is an £ & R#B with
(2.5.3) J(f) =
To this end, definé continuous linear transformations

K: (L(B)* —>2(Ly(3), L,(B))
- L: R#B —> EN(L,(3), I,(B))
H: _‘-\_(--Jj( )s 1(3}> — <Ll(B))*

by the formulae below, iz whick * & (L,(B))", M & L,(B),
bEB, £& RBEB, and OE F(L,(3), L,(3)) = {bounded

Iy

linear urﬁns¢o mations from L.(3) to itselfl

gu.} , waere }ib(a) = /4(b/\a)

0

I
o

(2.5.4) (EE)I(ND) =
afind ((L(f)>cﬁi))(b} = Iﬁ(fxb> * ﬁrf(b)

(2.5.6) (H@O@D() = (DH(u)I(L), where 1 = unit of B.
The identities

(K(J(Ju))(rf () = J(EI(Jy) = I, (L) = I wkE XD
and o

HEE) DI () = (KEDCIQ) = F(laq) = 1“(/u.)

indicate that XJ = L and HK = id(Ll(B))* s, from wnich it

follows that J = HKJ = HL. Consequently, if we are able,
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P

given F € (Ll(B))"' , to produce an £ € R#B for which

(2.5.7) L(£) = K(F) ,

we will have solved the problem posed by (2.5.3), i.e.,
proved that J 4is onto. Ve shall nead a lemma which

is related to the chain rule.

(2.5.8) Lemma. If &€ EN(L;(B), L;(B)) satisfies
d (X)) = 0 whenever |AJ(b) =0 (all bE& B and
all ) € Ll(B) ), then L(£)+d = H-L(f) for all £ & R%B.

Proof: Since L and ¢ are linear and continuous,

it is fortunately enough to prove that & and I( Ia)
commute for each characteristic functionoid Ia . The
hypothesis indicates thas | O(L( X )(A))I(b) = O whenever
iL(Xa)()..)i(b) = 0, i.c., whenever a/\bd & N!M ', and in
particular, whenever &a/\2 = O . Consequently, where L= Xl

is the unit elemeant of R 3, .we have

ST X, WA A AD) = 0
and ;

B(L(L- X )(AN(AD) = 0 .
Hence

SAI(®) = (& (T +T(T=- X (A (D) =

= X
= (D-LC X (420 +(&@-L(L-X )(A)(b) =

(@I NEAD) ] <@-L<1-xa>(7\>>ca/\b>\(

|
= + -+ J

=

v
(@T(X (AN A_a)/\b)ga (@-3(1- X DOAN LY
= (&-T(XD(ANEAD) + (&-L(2-X,)(AN((1AND),

e
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And by (2;5.5)Ithis is the same as
(TAX )+ @ TCXDAIB) + (T(L-X,) + & +L(A-X, (A (D) «

Thus & = L(Xa)d_{aL(Ia) +L(1—Xa)q‘j_aL(]1-Xa) . Pre- and post-

- multiplying this identity by L(Ia) , We obtain
LX) @ = LIX)SL(X,) = & L(X,)

as required.

£

Returning to the proof of Theorem (2.5.2), we are given
FE Ll(B)' and search for £ € R#B satisfying (2.5.7).

Assume for the moment thas Z3 =

td
0]
ct
ay
8]
ct
ot
)
O]
=
]
'_l
W

strictly positive finitc nornmal measure [ defined on all

of B. For convenience in thinking, assume also that F
is a positive linear functional -- this is no great restriction.
Notice that K(F)(ﬁ\) is Shen positive, and that, from the
definition of X, iX(F){A)i(b) = 0 if tA1(p) = 0.

Then by (2.5.8), X(F)-L(z) = L(g)+X(F) for 2ll g & R#B.
Using the Rador-Nikodym tLeorem,'find a2 absolutely

u-integrable functionoid £ for waich K(F)(M) = /C: 5 5

since O 5‘K(F)(ﬁ{)(b} < WP w(b) , £ 4is bounded, i.e.,

is in R#B, and L{£}(1)(b) = I(£Xy) = Fio(®) = K(EY(p)(D)

so thast

(2.5.9) LE(p) = EEX () -

This is not quite good enough: we need to know that
LEY(A) = K(F)() ) for every finite normal measure
A on B. Solet AE I.l(B) . Using the Radon-Nikodym

theorem once again, produce an absolutely /A-integrable

i e R Al e
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—
functionoid g such that A = ﬁg . If g€ R#B (which

of course need not be the case), then ) = :(g)(fL), 2ence

L(EXC) ) = T(EX(T(E)(p)) = L(eX(T(EI(p)) =
L(g)(R(FI( M) = K(F)(L(g)(,u )) =
KCEI() )

using only Lemma (2.5.8). That measuras pg with g € H;B
are dense in Ll(B) follows from the second remark after
(2.4.1), and so by continuity, L(£)(A) = K(@F)(A) for

all A € 1,(B) . This cstablishes (2.5.7) in the case

that EB = B, and proves the theorem in that case.

For the general cass, tvhav 5 1is merely dense in 3B,

w
o]
w
ct
jay
o]

notice thatv every finite normal mcasure on
extension by zero of a finite normal measure on a
principal ideal B , e & Zy (compare Lemmas (2.2.4)

and (2.2.5)). In this sense,

so that
(31(5))* fal“ l*m L (B ))* = inv lim (Ll(Be))‘
- '»— B 8 EB

= inv 1'1& R%Be = R# (inv lim B,) =

R# B, = RZB,

which proves the theorem (using the results of §1.10 and the

already established special case).
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(2.5.10) Corollary. If f#-is a positive & -measu-e
' ' LN * 3 X -
on a S-ring _B , then (I'l(/")) = IR#(f) (:.'./‘,\ /)N/u)) .

Proof: By the remarks after (2.4.1) and by (2.2.4)

and (2.2.5), we have isomorphisms
I"l(P‘) = WJ_(E/‘J/,NF) = I'j_(/‘;(E/i /N/i)) .
Now apply (2.5.2).

(2.5.11) Corollary (Thorp [ 30, Theorem 4]) . Let
' | False.

= f/.& Then (Ll(/u))' = See

.

) ]
/L be a positive { -measure on & s-ring B. Assunme

that B = AE, and that I,
= m#(B/I\T’PL) « Proof: §2"’

Imnmediate consequence of the previous corollary and

the definitions of §2.5.

Remarks. 1) It foliows from (2.2.4), (2.2.5), and
(2.5.2) that for za arbiirary complete boolean ring, B,

(3,(B))* = R#5E; .

2) The passage Irom the complete boolean ring B %o
its {-ideal and /\-complete boolean ring Ey is the
construction, promised in The remark after the proof of
(1.10.11), that behaves, at least occasionally, like an
inverse to the fuanctor ;5?: A —~Y . Ve know no more

about it than is presented in this chapter.

3) Combining the results of the present section with
those of 42.2, we scece that the canonical injection of

L, (i) into its second dual (L, (u))** =V, (1(8, /K, ))
i ) ;‘L / 1 . JL\ I" 4



has a preferred splitting._ This phenomenon does not séem
to have been made use of. It suggests, speaking loosely,
that Ll(}() is' trying to be refiexive. This is
suggested also by the following observation. Call a
continuous linear transformation between conditionally

complete lattice-ordered Banach spaces utterly continuous

if its positive and negative parts preserve the limits of

all order-convergent manotone.nets. Continuity and utter
continuity are the same for linear functionals on Lp(}()
(L<p€ M), bobut a linear functional on Lm(/_z) = IR%-?(E/{ /IT{_,)
is utterly continuous if and only if it is completely

additive and Daniell.’ Thus, in the category of conditionally

complete lattice-ordered 3znach spaces and utterly continuous

naps , Ll(}L) is reflexive.

4) As expected, it can be proved tkhat Lp(ﬁ;j is
reflexive, 1<p &€ 1R, with dual space L,(/« ) where
p“l + q"l = 1; there is no great interest in this result,
however, since it follows (through the Stone space) fronm

the classical Lp-Lq duality.

e e

B e P -

e



2.6 The Fubini Theorenm

D. A. Kappos seems to be the first to have formulated
a Fubini theorem entirely in the coantext of boolean rings
[187] . Unfortunately, he did not succeed in proving it,
as was noticed by Sikorski [247] not long afterward. In
the meantime, the matter appears .o nhave been forgotten,
and no purely boolean proof of the Fubini theorem has

appeared, %o the best of our knowledge, until the present.

(2.6.1) Theorem (Fubini). ILet L, amd (£, be

positive g@G=-measures on ¢ =rings Bl and B2,
respectively. There 4is a unique ¢ -measure o= N l&" /42

on the tensor product E @&E@
Rl 2

{u(aayb) = {LLl(a) r;,ig(b) (a & E!U‘l , b & Ef(’z)

satisfying the equation

(the convention is ©O-cc = Q0 ). In addition, there is a

canonical isometric isomornaism
s ' O | o o "II\.
v

where & denotes the tensor product (¢cf. Schatten r22]
N =
o

or Grothendiecl: T1273) in the autonomous category of

. Banach spaces. Proof:

Uniqueness follows from {2, §206, Satz 17]. Tor the
existence, it is convenient and, by (2.4.1l), harmless so
far as the spaces Ll and the measures are concerned, %o

assume that N, = {0} and B, = E, (divide out X
' Py R ! 4

and restrict attention ot E, , if necessary), ~ince

Py

tensoring is exact,
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Let : i, :+ R#F —>ZI'R (k=1, 2)
% e T
be the positive linear functionals in terms of which the
I’l norms on IR# FI“‘ are defined. Their tensor product
k

i @1 =-TR#F. & R#F, —> R& R= R,

when composéd with the canonical isomorphism of (1.6.7 .6.)
R# (F, & F, ) — R#F, & R#F, ,
P72 Pa pLTRTT R
gives a positive linear functional i,- on R# (F, @ FH Y
' rl g ¥ 2

Th (o) i on IR#F(F & I
e norm hl,‘ # (B lka 92) ’

; + -
!f,:l ™ 1¢(f ) # L. ) ’

associated to i, is the same as the restriction to

R#T

L

& R# F}& of the H=-crossnorm of Schatten on
R

% . i1k R#PF
Ll(ﬂjl) % Llcf 2) , and since —L”rkk

by definition, it follows that .Eh#(Fp & ¥, ) is an
;12:

isometrically embedced cence subspace of Ll(p_l)cﬁ Ll(f‘E)'

is dense in Ll(ftk)

Let F, denote the topological closure in L (t&l) @ Ll(/xz)
v

of the set F of cararacteristic functionvuids in
R# CF @ F ). Properties of tae norm and order indicate

1.2 B3

that ¥ is a /\-com

'Cl
l_j
m
[ I
(6]

boolean ring and that HO , The
restriction of the }ncrossnorm to Fo s 1s a strictly

positive measure which is normal on each principal ideal.

/
Define a (-morphism q: F, KF,_—>F_ by specifying the
P13 F2 v
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g-bilinear map ¢ tkhat gives 2ise to qQ by the formula
d(a, ®) = X & Xy (a € T, 3B E.sz) .

’

This map q ﬁay not be onto, but, where § : ¢ — <
is the left adjoint of the inclusion functor § vl B 5
s(: s, 6 F ) —> 5(F,)
1o 72

is onto. Indeed, it's enough to see that each elementv of
Fo is obtained. Bui each element of FO ié the norm
limit of a sequence of elements oI F., which are in

the image, hence is obtaincd. Now tne measure My on

Fo , being normal on each principal ideal, has a unigue

!

extension o a J-measure on

(W

-(FO) y Say 3‘(#‘\0) 3

and it is evident that T = F . hence
o F)(f}‘ﬁo)

~
i .

Ll( ‘:(L\O)) = Ll( ,"I"LO) = :Jl( L;) "\ -‘-'1(,—"2) -

(this

-

f‘-:. e T s I.'.:f"'\
\A-\.L L‘- a..“ ) \-ﬂp

g M2 i |
can oe proved by argunents similar to The transfinite

Finally, 1

e
(¥4 (y
(]
Py
e
=
g
1]
L
N
<3|
e

induction argument in the proof of (l.4.6) and (1l.4.8)) ;
hence, pulling the measure ~(u ) Ddack over 5(q)
and these isomorpaisms, we obtain a measure M on

E”Ll Q«b Er""g for wnich Ll(}'*) = I'_al(‘.-.-‘(lj-,lo)) = Ll({vl) (A; 'Ll({u2)
by the naturality statement in (2.4.1) . From this

relation and the definition of q, <vhe desired product
formula }i(ag_b) = :ul(a)sz(b) is evident, and the

theorem is proved.
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Remarks. 1) The usual double integral formulation
of the Fubini theorem is now trivial. .If L4 and Mo
are { -measures and o= pltﬁfAz is tvhe product
measure as defined in the preceding theorem, the
isomorphism Ly (L) &\: Li(pp) = Iy(#) indicates
that the linear functional "integrate with i " 1is
the composition

Ly () = Iy () ‘3 I(fa) — I s ,) — R

where the second map is "{(integrate with ﬁ&k) ® (ident.)"

and the last is "integrate with }LE_R" (k = 1, 2) o
2) Lp(}il) %Rlb(fke) ‘can be proved to be dense

—

in Lp(}ii’& Ffs) (1<p € R), but no L _-type tensor
product of Banach spaces appears VO e xnown, else

there would undoubtedly be an isomorphism. Schatten [2%7]
gives a simple examples sanowing th2at no such isomorphism
'is to be expected for L, . However, it is possible that
working in the category of conditionally complete lattice=-

ordered Banach spaces with utterly continuous maps, there

might be room for hope, since Ty

(9\13:;w2) does seem °
to be the only cornditionally compiete vector sublattice

of itself containing the elementary tensor products

X, ®X, -
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2.7 ILocalizability and the dual of Ll

This section is divided into three parts, The first,
culminating in (2.7.9), discusses the localizability of a
boolean ring over one of its ideals, relating this notion
to the material of $1.10. The second part uses localizability
as a necessary and sufficient condition for a certain alternate
description of the dual of Ll to be valid., The third part
relates localizability to the notion of localizability developed
by Sagal(l) in his study of measure spaces.

I. Localizability over ideals. Let J be an ideal in
the boolean ring A, and let p: A —» A/J denote the natural
projection, Thinking of A as an A-module, J becomes an
A-submodule, and so the quotient ring A/J also inherits an
A-module structure, which, incidentally, is the same as that
induced from the natural (A/J)-module structure by change of
ringa.via tae canonical projection p. drite dA,J for the
connecting homomorphism ,M(A, A/J) — Exti(k, J). Call A
localizable over J if dA,J =0, so that &A,J is in a

certain sense the obstruction to the localizability of A over

J. The exactness of the initial portion

(2.7.1) 0=, M(A, J)—>,M(A, &) —> M(A, A/J)—>Exti (A, J)

of the ext sequence immediately delivers

(2.7.2) Observation. A is localizable over J if and
only if there is, for each A-module morphism f£: A — A/J,
an A-module endomorphism g of A such that f = pe-g.

Recalling (1,10.10), we now reinterpret

(2o7-3) A@(A. P)= AE(‘&Q A) —» AE(AQ A/T)
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as a map from fSA to P(A/J) . Precisely, the projection

p: A —>» A/J induces maps

(2.7.4) M4/, 8/3) —> \M(A/T, A/T) =5 M(A, A/T)

by change of rings and contravariant composition, respectively.
Both maps are isomorphisms. For the first, this is obvious
because the A-modulé structure on A/J 1is precisely that
induced through p by change of rings. As for the second,
which is caertainly a monomorphism, it suffices to see that sach

feAI;i(A, A/J) vanishes on J3 and, in fact, if jedJ,
£(3) = £(3n~3) = £(3)Ap(3) = £(j)A0 = 0.

Combining (2.7.%) with the isomorphisms afforded by (2.7.4)
and (1.10.10 i), we obtain a map

Pp: pA —> [(A/T).

It is left for the reader to satisfy himself that ﬂp is
in fact a ring homomorphism, aending unit to unit.

(2.7.5) Lemma, pp is surjective if and only if
A 1is localizable over J.,

Proof: an immediate consequence of (2.7.2) and the
fact that p is surjective iff (2.7.3) is.

(2.7.6) Corollary. Every boolean ring with unit is
localizable over every ideal (since p = fap )e

Because of the exactness of (2.7.1), it is easy to
characterise the kernel 7 of ﬁp-

(2.7.7) Ismma. The kernel T of AP consists of
those beg PA for which 8 €A ==» bABEJ.

The proof resides in the realisation that ths described

elements constitute H(A, J).
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Combining (2.7.7) with (2.7.5) for future reference,
w1 have

(2.7.8) Proposition. The canonical map ;fﬁp: pa — ;5'\-'31/3}

‘."f * oy 4. & » P
induces a nonomorphisn P! ;es,sl/ e f&’ {2/3) which ig an

jiscmorphism if and onliy if A is localigzable ever J.

P Wl ey 2, - - t 4 T LU e N W T
PLAST )~ e acrplaste ‘necessery aud suiflchent

; . B L W o D s . o
condibtions for #his to cceur apve ziven in {1.10.11)). Ths

i)y A is lgcalizable over J3 43) p is surjective;

2 3 p L - - - =4 . M ]
A1i) AL/ J is cempletey iv) ¥ is an isomorphisn.
J i
Proof: i), ii), and iv) are putually aquivalent by

(2.7.5) and (2.7.8); that iv) =>» iii) is sriviel. It remains

-

0 prove, sa 131 == iv), sing (2.7.7 on. gaes btha
to p . Yo i U g (2.7:7), that
N -
the kernel of the compoziticn A —-—2 {?5-;’1 e f@f;;’ Jd i3
. L g .
precisely J. The induced map A/J —3 (91‘1,’8 is part of
’ -
a tower of monomorphisms &/d —> féﬁ/ o e iB(A/&‘) s hence
is a dense extensiocn of 4/, end is thereiore maximal, by

(1.10.13). It follows, using (1.10.%), that T is an isomorphism.

IT. HMezsures on d-pings. Let @ be & positive

i e S T AR T G- =3 el i S
H
I* oy e T s oy A k= - Ay o o T i Y
Y-measure on tha s-rinz L, and let I,, ¥,, B,, E.
P F d I ¢
=nm
15-.5.‘.‘!
L
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R

is localizable over NF‘

(2.7.10) Theorem. The system gu, B) is localizable
if and only if either of the équivalent conditions listed below
is valid.

i) The linear transformation J: ]RiFBr, —> (Ly(u, B)*
given by _

(2.7.11)  §(£)(8) = [taan (feR¥B,, gel(u, B))
induces an isometric isomorphism between ng,/m?n‘;. and
(L, (ps BN*

ii) BF/EF is complete. ‘

Proof: The equivalence of ii) with either definition of
localizability of (rg, B) is due to (2.7.9). For the rest of
the proof, we present a factorisation of J:

RF B, — 2 B» =2 RE (8, /) — R fEK) > Ty (s B
Here the first map is the canonical projection, the second
is the canonical isomorphism, the third is IR#P, and the last
is the isomorphism of (2.5.10).. By (2.7.9), to prove i) &= 1ii),
it suffices to pOgve that IR#P is an isometric isomorphism

if and only if P 4is an isomorphism. That, however, is obvious.

III. Measure spaces & la Segal. The terminology to be
introduced here is borrowed from the work of Segal cited in
footnote (1). The only difference is that, while Segal allows

complex valued functions, we restrict ourselves to real valued
functions. This is no great restriction, however, and is done

entirely for the sake of convenience. (Tensor everything with

the complex numbers, if you want the complex case.)
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A measure spuce is a triple (X, R, m) consisting of a
set X, a {-ring R of subsets of X, and & finite positive
measure m on R, whose restriction to each principal ideal
of R 1is countably additive. We shall never make use of the
further restriction that Segal imposes per definitionem on all
measure spaces, namely, that the union of each countapble family
of mutuslly disjoint sets L €R o= 1,2 %), for which *
znm(En)<oo, also be in R.

A subset Y of X is measurable if each intersection
Ynr (reR) belongs to R. BSegal verifies that'the class Bl
of measurable sets is a 6-ring, that the function ’.11 ”
defined by }.ll(Y) = _supreRm(an) s is a 6-measure on BJ. "
and that pl(r) = n(r) whenevar_ réR. A real valued function
on X 4is measurable if, in the terminology of §l.7, it is &
Borgl-morphism from (X, R, 6) to (IR, B, 0) . A subset Y
of X 4s null if it is measurable and m(YAr) =« O, whenever
reR (equivalently, pl(l‘) = 0); a function is null if it is
measurable and its support is a Inull get. A function is
essentially bounded if its reetriction to the complement of
some null set is bounded; absolutely integrable if it is
measurable and its absolute value is the pointwise limit of
an Ll-cauchy sequence of finite linear combinations of
characteristic functions of sets in R. The space of
essentially bounded measvrable functions modulo null functions
is denoted RBm(X, R, m) , and has the sup norm; that of
absolutely inteyxrable functions mod null functions, in the
L, norm, is RB,(X, R, m)., We write RB , BB, , for short.

Ietting Rl denote the class of null sets, Segal calls
(X, R, m) localizable if the quotient ring Bl/Nl is complete.
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Segal proves(a) that the map J: RB — (RB]_)‘ defined by
analogy with formula (2.7.11) is an isometry iff (X, R, m)
is localizable. Corollary (2.5.10), however, provides an
explicit, function-like representation of (RB]_)" whether
(Xy R, m) 1is localizable or not. Frecisely, Theorems
(1,7.1) and (1.7.2) permit comuvlcte identification of the
space of measurable functions with the space i(IBm, By,
so that, using the prvjectivity of IBm s complete
identification of the space of measurable functions mod
null functions with &(JBIL. . B]_/NI) is posein}e. In this
WaYy o Rﬁw = ]R?(Bl/ﬂl) . Before wne find the counterpart
to Rtil « let us exa"_j;jnea 331 and Nl'

Let X, denote the union i YY) of al) the sets
belonging to R, and write Xp for its complenment.

G Heh swonat 2T X 18 meusueranle tnad null,
If B aad N dencts Lhe prisgipsil 1leals of r?_L sl ?21.,
RA N, then

]

recpectively, generated by L \.'Inile Jd
B=fR, N-= J, and By/N, & B/N& fR/T, vnere T fis
the kernel of the canonical map (’R -—-){a(R/J) 2

Proof: The first assertion is obvious. That B = @8R
is due to (1.10.10) and the tact that B -ﬁx(R) by
construction. The next identification is due to (2.7.7),
and the rest follows.

Returning to RS, , let P' denote the restriction of
lul to B, and form N, , Fos B, and B, as usual for
the system (f" B) . Note that N = N, and that the image
in B/N of Ii."JL is precisely the s-ring generated by the

image of R (under Segal's extra condition, which we are

not using, the images of F#' and of & would couincide).
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Now RBl is defined essentially as the Ll-norm completion

of R#(R/T); Ll(p., B) , on the other hand, ._is the L,-norm
completion of IR# (FH‘/NP‘); what we have just said, huwever,
ensures that each element of IR# (FP/HP) is approximable by
elements of R# (R/J), and so these completions coincide, i.e.,

for RB, we may take I'l(f“ s B) . e now prove

(2.7.13) Theorem. The following three conditions on
the measure space (X, R, m) are equivalent.

i) (X, R, m) is localizable in the sense of Segalj;

i1) R 4is localizable over J; |

iii) the map J: RB_ ——-)(RBI)" defined by analogy with
the mﬁp (2.7.11) is an isometric isomorphism. |

Proof: The equivalence of i) with ii) is due to
(2.7.9) and (2.7.12). For the re-st, let & denote the adjoint
to the inclueion of &-rings in &-rings. By some of the

conments preceding the theorem, we have a tower
R/J €6R/(NA eR) = (R/T) = B,/NCB/N = pr/ T p(8/7) .

Now EF‘/N is a dense ideal in E/N since Ey, is an 1@5&1 in
B and the subset R/J is already dense in the over-ring
P(R/J) . An application of (1.10.13) shows that the

inclusion of E /N in fB/:f makes JR/J = BE/F)
whenever i) holds; on the other hand, i) is valid as soan

as /sR/:f —‘B(E’/N) » 8ince the latter is complete. To
clinch the argument, one proceeds, as in the proof of
(2.7.10), to show that iii) is the case also if and only

if the inclusion of EP/N in pR/E makes 53/3- ‘3(3,/“) .
using the facts that RBy = R7F ?3/3) and (RB,)* =

(T (py BY* =R7 (B, /N) .
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rgotnotes

(l)I, B, Segal, Equivalences of measure spaces, Amer. J. Lath.

75 (1951}, pp. 275-315.

(2)part of Theorem 5.1 on page 301 of the cited work of Segal.
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information concerning copyright in books

Wohew To Use Covm A Forne A is appraproe (o published
fiooks which have been ssnufacurcd 0 the Trted Saates,
Wi ds o “Book”? The wrm “hooks” ers oot only ma
terial published m book form. buor also pamphlers, leaflews,
cards, aad single pages contaummg rext. Books include hotion,
nontiction, poetry, collectsons, directiries, catalogs, and infor-

muarson i rabuelae form

Unpublished Baoks. The law does not provide fur regisira.
ton of “bhook” material in unpublished form.  Unpublished
books are prutected st common law against unauthorized ase
prior to publication.

Dusatinn of Copyright.  Statutocy copyright tn published
books lasts for 28 vears from the date of first publicadon, and
miay be renewed for a second 28-vear term.

How to secure statutory copyright in a book

First: Prodece Copies W ith Capyrieht Natice. Produce the
work in copies by printing or other means of reproduction, To
secdre copynght, it is esseadial that the copies bear a copyright
notice in the required form and position, s explained below,

Second: Publish the Work With Capyvicht Notice, The
copyright law defines the “date of publicanon™ as ™. . ., the
earltest date when copies of the first aurhorized edition were
placed on sale, «old, or publicly disoribuied by the proprietor
of the copyright or under his authoriy.”

Third: Register Yonur Copyright Claim. Prompdy after pub-
Lication, mail 1o the Register of Copyrights, Library of Con-

gress, Washingron 25, D, C.. two copies of the work as
published with notice, an application on Form A, properly
completed and norarized, and a fee of $4.

The Capyright Notice. The copyright notice for books shall
appear on the tile page or verso cherenf, and shall consist
of three elements: the word "Copyright,” or the abbreviation
“Copr.,” or the symbol &), accompanied by the name of the
copyright owner and the vear date of publication. Example:
@ John Doe 1961, Use of the symbol T may result in secur-
ing copyright 1n countries which are members of the Universal
Copyright Convention.

| . g ; ;
{ NOTE: It is the act of publication with notice that actually secures copyright protection, [If copies
the right tw secure copyright is lost, and cannoe

i are published without the reguived nonce,
| be restored.

Books manufactured abri:ad

In Geners). Form A is not approptiate for books which
have been manufactured outside the United States.

Forelgn-Lawguage Books,  Applicatons covering foreign-
language books by foreign authors, manufactured abroad,
should be submitted on Form A-B Foreign.

English-Language Books, Books in English manufactured
abroad may he registered for “ad ingerim” copyright (Form A-B
Ad In_:er:m_}; or, if they are protected under the Usniversal
Copyright Convention they are eligible for full-term registration
on Form A-B Foreign:

(1) Ad Interim Copyright.  Ad interim registration is neces-
sary for protection in the United Stares unless copyright has
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been secured under the Universal Copyright Coavention. To
secare ad intecim copyright a claim must be registered within
six months of firse publication abroad., Ad interim copynight
lases for 5 years or unul an American edition is published
within the S-year period and registered.

(2) Universal Copyright Conventian. An English language
work by a foreign author first published abroad is eligibie for
full-term T1. 8. copyright if: (2} its author is a citizen or subject
f{f A country which 15 a2 member of the Universal Copyright
Convention, or the wark was first published in such countey,
and (b) all published copies bear the co pyright notice provided
under the Universal Copvright Convention. ’




